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Foreword 

New vehicle technology continues to evolve, along with the role and responsibilities of 

drivers. Sophisticated forms of automation can control many aspects of driving: the 

vehicle’s speed, headway, and lane position, and these capabilities continue to grow. Past 

research has documented gaps in drivers’ understanding of these technologies as well 

important safety implications of such. Less is known about how drivers’ understanding of 

new technology—sometimes referred to as mental models—develop and evolve over time.  

This technical report summarizes a study examining how the understanding of an 

advanced driver assistance system, adaptive cruise control (ACC), changes over the first 6 

months of ownership in a sample of new owners of vehicles. The results should help 

researchers, the automobile industry, and government entities better understand driver 

performance, behavior, and interactions in vehicles with advanced technologies.  

This report is a product of an active cooperative research program between the AAA 

Foundation for Traffic Safety and the SAFER-SIM University Transportation Center.  

 

 

 

C. Y. David Yang, Ph.D.  

 

Executive Director  

AAA Foundation for Traffic Safety 

 

 

 

Dawn Marshall 

 

SAFER-SIM Director 

National Advanced Driving Simulator 

The University of Iowa 

  



 

iii 

 

 

About the Sponsors 

AAA Foundation for Traffic Safety 

607 14th Street, NW, Suite 201 

Washington, D.C. 20005 

202-638-5944 

www.aaafoundation.org 

Founded in 1947, the AAA Foundation for Traffic Safety in Washington, D.C., is a 

nonprofit, publicly supported charitable research and education organization dedicated to 

saving lives by preventing traffic crashes and reducing injuries when crashes occur. 

Funding for this report was provided by voluntary contributions from AAA/CAA and their 

affiliated motor clubs, individual members, AAA-affiliated insurance companies, and other 

organizations or sources.  

This publication is distributed by the AAA Foundation for Traffic Safety at no charge, as a 

public service. It may not be resold or used for commercial purposes without the explicit 

permission of the foundation. It may, however, be copied in whole or in part and distributed 

for free via any medium, provided the Foundation is given appropriate credit as the source 

of the material. The AAA Foundation for Traffic Safety assumes no liability for the use or 

misuse of any information, opinions, findings, conclusions, or recommendations contained 

in this report.  

If trade or manufacturer’s names are mentioned, it is only because they are considered 

essential to the object of this report and their mention should not be construed as an 

endorsement. The AAA Foundation for Traffic Safety does not endorse products or 

manufacturers.  

SAFER-SIM University Transportation Center 

Federal Grant No: 69A3551747131 

SAFER-SIM is comprised of a multidisciplinary, synergistic team of researchers in human 

factors, engineering, computer science, and psychology who will use innovative simulation 

approaches ranging from microsimulation to human-in-the-loop simulation to promote 

safety. SAFER-SIM sponsors research, outreach activities in STEM areas, and aids 

workforce development efforts in transportation safety. 

The universities comprising SAFER-SIM study how road users, roadway infrastructure, 

and new vehicle technologies interact and interface with each other using microsimulation 

and state-of-the-art driving, bicycling, pedestrian simulators.  

DISCLAIMER  

The contents of this report reflect the views of the authors, who are responsible for the facts and the 

accuracy of the information presented herein. This document is disseminated in the interest of 

information exchange. The report is funded, partially or entirely, by a grant from the U.S. 

Department of Transportation’s University Transportation Centers Program. However, the U.S. 

Government assumes no liability for the contents or use thereof.   

http://www.aaafoundation.org/


 

iv 

 

 

Table of Contents 

Title ........................................................................................................................................... i 

Authors ..................................................................................................................................... i 

Foreword ................................................................................................................................ ii 

About the Sponsors ..............................................................................................................iii 

Table of Contents ................................................................................................................. iv 

Abstract ................................................................................................................................... v 

Introduction ........................................................................................................................... 1 

Method..................................................................................................................................... 2 
Participants ........................................................................................................................ 2 
Simulator and ACC Technology ........................................................................................ 3 
Study Procedure ................................................................................................................. 5 

Mental Model Assessment .......................................................................................... 5 
Weekly Mileage Readings and ACC Usage ................................................................ 6 
Simulator Drive ........................................................................................................... 6 

Experimental Drives .......................................................................................................... 7 
Database ...................................................................................................................... 7 
Edge Case Scenarios ................................................................................................... 7 
State Transitions ....................................................................................................... 10 

Results ................................................................................................................................... 12 
Data Reduction ..................................................................................................................12 
Mental Model Assessment Over Exposure .......................................................................13 
MMA Clusters ...................................................................................................................14 
Changes in Mental Models by Cluster Group ..................................................................16 
Relationship Between Mental Models and Driving Performance ....................................18 
Comparison with Weak and Strong Mental Model Groups .............................................19 

Discussion ............................................................................................................................. 22 

References ............................................................................................................................ 26 

Appendix A—Mental Model Assessment ........................................................................ 28 

Appendix B—Training Presentation ............................................................................... 31 
 

  



 

v 

 

 

Abstract 

Drivers often learn about the advanced driver assistance systems (ADAS) on their vehicles 

over time and through trial and error. While this experience can aid drivers’ understanding 

about the systems, it may not necessarily lead to sufficient and accurate mental models, 

especially concerning less frequent “edge case” situations. This study recruited 39 new 

owners of vehicles equipped with ADAS technology to which the owners were naïve. The 

initial mental model of these owners was evaluated using a mental model assessment. To 

understand changes in mental models over time the assessment was repeated six times 

over the course of approximately 6 months. Weekly mileage, technology usage, and 

information regarding their exposure to edge case scenarios was also collected. At the end of 

the 6 months, participants completed a simulator drive using adaptive cruise control (ACC) 

that included several edge cases.  

Over the course of the first 6 months of vehicle ownership, drivers’ scores on the mental 

model assessment improved. These improvements were largely due to increased 

understanding of the technology’s limitations as opposed to improvements in knowledge 

about system function. An evaluation of different clusters of drivers, based on knowledge as 

well as confidence revealed some important patterns in the evolution of these constructs. 

With respect to driving performance in the simulator session, the mental model scores were 

not predictive of responses to the edge cases. However, a comparison of the current mental 

model scores against weak and strong mental model benchmark scores gathered in a 

previous study revealed some additional insight about the role and effectiveness of exposure 

in mental model development. Overall, the combination of questionnaire, simulation, and 

naturalistic data used in the current study offers some important insight into how mental 

models are developed in new owners of vehicles equipped with advanced technology. 
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Introduction 

There has been growing interest in advanced driver assistance systems (ADAS) since the 

early 2000s, to the point where these systems are now some of the most sought-after 

features drivers look for in their next vehicle. However, even as these systems can enhance 

safety and comfort, drivers must first accept, adopt, and use the systems in order to realize 

these benefits. Driver knowledge and understanding of ADAS—sometimes referred to as a 

driver’s mental model—are important considerations in the safe and appropriate use of 

these systems.  

A mental model has been defined as a reflection of an operator’s knowledge of a system’s 

purpose, its form and function, and its observed and future system states (e.g., Johnson-

Laird, 1983; Rouse & Morris, 1986; Seppelt & Victor, 2020). It follows that an operator’s 

mental model can have important implications in determining how they interact with a 

given system. An incorrect mental model can negatively impact both the potential safety 

benefits that are intended by the system and overall road safety. For example, Gaspar et al. 

(2021) found that drivers who had poor mental models concerning an adaptive cruise 

control system were less likely to react or slower to react to certain situations where the 

technology did not function compared with drivers who had strong mental models.  

Mental models are based on a user’s beliefs and perceptions and may be derived from 

various sources (e.g., a demonstration at the dealership, information on the internet, or the 

owner’s manual). However, several studies have found that regardless of your initial 

mental model, real experience with the system leads to convergence to a more realistic 

understanding of the system functionality and limitations (Beggiato & Krems, 2013; Ojeda 

& Nathan, 2006; Weinberger et al. 2001; Singer & Jenness, 2020).  

Actual on-road experience, or trial and error, is reportedly one of drivers’ preferred methods 

of learning ADAS technologies (Jenness et al., 2008; Llaneras, 2006; Larsson, 2012). The 

amount of on-road experience necessary for the evolution of the learning process and the 

development of a mental model was analyzed by Beggiato et al. (2015). Researchers asked 

15 drivers with no adaptive cruise control (ACC) experience to complete 10 drives on the 

same test route over a 2-month period. Results showed non-linear trends over time, with a 

steep improvement in the first session and a subsequent stabilization after the fifth drive 

(approximately 115 miles). They did not see any decline with ongoing experience; however, 

performance on the mental model questionnaire found that drivers seemed to be less aware 

of those system limitations that were not directly observed.  

In addition to experience, or time spent using the system, mental models are impacted by 

exposure to situations that test their understanding of the system. Jenness et al. (2019) 

recently conducted several focus groups with participants who had purchased a vehicle with 

at least two ADAS features within the last year. Researchers used these sessions to identify 

sources of information that played a role in generating the mental model users had 

regarding the ADAS technologies. Several participants said experimentation with the 

system and actually encountering real-world edge cases helped them the most in 

understanding their ADAS features. This is supported by the results of a recent on-road 

study, which examined not just changes in mental models with time but changes due to 
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encounters with specific edge cases (Novakazi et al., 2020). Naturalistic driving data from 

132 participants were combined with data from in-depth interviews of twelve drivers who 

were showing different usage patterns. The results showed that experiencing different 

situations that challenged their understanding of the system helped the user to develop the 

appropriate mental model. 

This project represents the second study in a line of research to explore the impact of 

drivers’ mental models on performance. The previous study in this research program used a 

combination of screening and training to establish two groups of participants, one with 

weak mental models and one with strong mental models (Gaspar et al., 2020; 2021). To 

date, there have been very few longitudinal studies that have examined the evolution of 

mental models in new owners of ADAS-equipped vehicles in a naturalistic setting. Thus, 

the goal of this project was to assess the mental models of naïve users of specific technology 

and, using similar methodology as what was used in previous work, evaluate how their 

mental models change with greater exposure to the systems (i.e., time and experience).  

Method 

Drivers who had purchased their first vehicle equipped with ACC within the previous 6 

weeks were recruited for the study. The quality of the participants’ mental models 

regarding a typical ACC system was assessed at the start of the study. This mental model 

assessment was given again after 2 weeks, 4 weeks, 8 weeks, 16 weeks and at the end of the 

study (i.e., 6 months after start). They were also asked to report, on a weekly basis, the 

miles driven using the vehicle, miles driven using ACC, as well as any experiences they 

encountered in which they were confused by the actions of the ACC system. After 6 months, 

participants completed an experimental session in a driving simulator using an ACC 

system where they encountered several “edge case” scenarios. Driving performance during 

edge case situations was assessed and changes in the mental model were examined over 

time and level of usage. This study was completed with approval and oversight by the 

University of Iowa Institutional Review Board (IRB). 

Participants 

Thirty-nine experienced drivers between the ages of 25 and 65 (M=43.0, SD=12.1) were 

recruited via the National Advanced Driving Simulator (NADS) subject registry (Table 1). 

Table 1. Participants by Age and Gender 

 
Males  
(N=17) 

Females  
(N=22) 

25–35 years 6 7 

36–45 years 6 5 

46–55 years 2 3 

56–65 years 3 7 
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Each potential participant was screened for eligibility. They were required to have a valid 

drivers’ license, have at least three years of driving experience, and drive at least 2,000 

miles per year. Potential participants were also required to have purchased a vehicle (i.e., 

new or used) within the previous 6 weeks that was equipped with ACC, and ACC was not 

present on any vehicle they previously owned. In order to obtain the numbers necessary for 

data collection, recruitment took place over the course of approximately 9 months. 

Simulator and ACC Technology 

The study utilized the University of Iowa’s National Advanced Driving Simulator (NADS) 

NADS-1 without motion (Figure 1). The simulator contained a full Toyota Camry cab and 

360-degree wraparound display (Figure 2).  

Figure 1 and 2. The NADS-1 Dome Exterior and Interior with Toyota Camry Cab 

   

The ACC implemented in the simulator was representative of the 2019 Toyota RAV-4 and 

incorporated realistic features of the ACC user interface, as shown in Figures 3 and 4. To 

the extent possible, aspects of system functionality were designed to match the RAV-4 

system (e.g., following gap distances).  
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Figure 3. Location of Displays and Controls 

 

Panel indicator for (1) the system status on/off, (2) the set speed, and (3) the following gap setting are shown. (4) 
Shows the location of the button for setting following distance gap on the steering wheel and (5) shows the location of 
the ACC lever behind and to the right of the steering wheel. 

 

Figure 4. Close Up of ACC Interface 
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Study Procedure 

An overview of the study protocol is shown in Figure 5. Due to safety protocols developed in 

response to the COVID-19 pandemic, participants were consented over the phone and sent 

a link via email to complete their first mental model assessment (MMA). A second MMA 

was sent 2 weeks after study start, the third at 4 weeks, the fourth at 8 weeks, the fifth at 

16 weeks.  

Figure 5. Study Procedure  

  

Note: Nine participants were unable to complete the simulator drive at the end of the 6 months due to COVID-19. 

Mental Model Assessment 

The Mental Models Assessment (from Gaspar et al., 2020; shown in full in Appendix A) 

asked questions about the participants’ understanding of ACC at that point in time, 

according to the schedule depicted in Figure 5. The assessment was comprised of 20 

true/false questions that evaluated a driver’s understanding of specific functionality and 

limitations of the system. Examples of these questions are shown in Table 2. 

Table 2. Examples of True/False Questions in the Mental Model Assessment 

Type of 
Question Statement 

Correct 
Answer 

Functionality  
Maintains the speed that you have set when there are no vehicles 
detected in the lane ahead  

T 

Functionality Adjusts the speed to match faster vehicles ahead  F 

Functionality Will provide steering input to keep the vehicle in its lane  F 

Limitation  
Will correctly detect motorcycles and other smaller vehicles not driving 
in the center of the lane  

F 

Limitation May not correctly detect stopped vehicles in your lane  T 

Limitation Reacts to stationary objects in the road (construction cone, tire, ball)  F 

 

For each of the true/false questions, participants were asked to rate their confidence in 

their response on a 4-point scale (i.e., high confidence, moderate confidence, slight 

confidence, or no confidence). 
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Participants were also presented with three scenarios and asked to describe how they 

believed the vehicle would respond. Each of these scenarios required that they understand 

a potential limitation of the system. Figure 6 shows an example of one scenario. 

Figure 6. Example of Scenario Questions from Mental Model Assessment 

 

In the example above, the participant was given credit for answers that incorporated some 

version of the following:  

 ACC may detect Car B as it goes around the curve because it is directly ahead of your 

vehicle  

 My car might lose track of Car A as it goes around the curve. Depending on my set speed 

it may slow down or speed up 

Overall, eight questions dealt with ACC functionality and 15 with the limitations of the 

system.  

Weekly Mileage Readings and ACC Usage 

Participants responded weekly to a questionnaire that asked them to provide their 

odometer reading, the number of miles (if any) driven by someone else, the number of miles 

driven using ACC, and whether they encountered any situations where the car behaved in 

a way they did not understand. If so, they were asked to provide details regarding this 

situation, whether or not they tried to figure out what had occurred, and what method they 

used to investigate (e.g., asked a friend, called the dealer, looked on the internet). 

Simulator Drive 

After 6 months of enrollment in the study, drivers were scheduled for a simulator drive at 

the NADS facility. Upon arrival, participants completed their sixth and final mental model 

assessment. They were then shown a PowerPoint presentation regarding the ACC system 

that they would be using in the simulator in case it differed from the system in the vehicle 

they own (i.e., the display or controls). Therefore, the presentation provided information on 

how to turn the ACC system on, set and adjust the speed, and turn the system off. The 

training presentation can be found in Appendix B. 

 

How might your ACC system behave in this situation? Why? 
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Participants completed both a practice and an experimental drive in the simulator. These 

drives took place on a rural highway during daytime conditions. They were informed that 

the speed limits would change, however they were only to change the vehicle speed when 

they were instructed to do so, even if they were to see a speed limit sign with a different 

speed. This was done to ensure that specific events (described below) occurred as they were 

designed for each participant. 

During the 20-minute practice drive, participants were acclimated to the simulator and 

interacted with the ACC system. A researcher was present in the simulator to provide 

instructions about how to turn ACC on, how to set a max speed, and how to adjust both the 

speed and the following gap. Recorded navigation instructions guided them along the route.  

The experimental drive lasted about 40 minutes and required participants to interact with 

the ACC based on the knowledge of the system to which they had been introduced. They 

were instructed that during this drive they would set the ACC, make adjustments to the 

vehicle speed when instructed to do so, and to change the following gap if it was necessary 

or if they were instructed to do so. If the driver were to cancel ACC, they were instructed to 

set the ACC to the posted speed limit when they felt comfortable doing so. Participants 

were also instructed to stay in the right lane unless instructed otherwise or if they felt that 

the situation required a lane change.  

The researcher sat in the back seat of the cab monitoring the driver’s wellness, including 

symptoms of simulator sickness. The driving environments were designed to mimic the 

range of operational design domains for ACC. Specific events, described below, were 

integrated into the drive to measure potential errors stemming from incorrect or incomplete 

mental models. At the end of the study drive, participants exited the simulator and 

completed questionnaires relating to realism in the simulator and demographics.  

Experimental Drives 

Database  

Simulator drives were completed on the NADS Springfield virtual database. This 

experiment used a segment of the freeway portion of the database, shown in Figure 7. The 

roadway consisted of portions of divided highway, with either two or four lanes of traffic 

traveling in the same direction. Light ambient traffic was present during periods between 

events.  

Edge Case Scenarios  

The study drive included six edge case scenarios (EC1–6) as shown on the map in Figure 7. 

These scenarios were informed by Pradhan et al. (2020) and based on a subset of possible 

situations that exceeded the capability of the ACC system. Participants encountered events 

in the same order. All edge cases took place on the 2-lane divided highway. For most of the 

edge case scenarios, there were 1 to 2 vehicles in the left lane, making it more difficult for 

the participant to make a quick, evasive maneuver around the obstacle. Each of the 

scenarios is described in more detail below.  
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Figure 7. Map of Experimental Drive 

 

ST=state transition and EC=edge case. 
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Figure 8. Screenshots of Selected Edge Case Events Included in the Analysis 

 

  

Clockwise from top left, EC2 (slow-moving motorcycle), EC3 (work zone), and EC6 (offset lead vehicle) 
 

Slow-Moving Vehicle (EC1). The participant vehicle was following the lead vehicle (LV) 

with the ACC speed set to 70 mph and a long following gap. The LV moved to the left lane 

to reveal a slow-moving vehicle (30 mph) in the right lane ahead. Although the ACC system 

detected the slow-moving vehicle, to avoid approaching the slow-moving vehicle at a large 

and uncomfortable speed differential, the participant had to slow to wait for the left lane to 

clear and safely pass the slow-moving vehicle.  

Slow-Moving Motorcycle (EC2). The participant vehicle was following LV at 65 mph (with 

ACC speed set to 70 mph) when the LV moved to the left lane to reveal a slow-moving 

motorcycle in the right lane ahead. As ACC cannot always detect smaller vehicles, the 

simulation was designed to ignore the presence of the motorcycle, thus accelerating the 

participant vehicle to its set speed (70 mph). To avoid collision, the participant needed to 

slow down in order to allow the left lane to clear and safely pass the motorcycle. (Note: the 

drive was not stopped for collisions; the simulator vehicle simply passed through the object 

it collided with.) See Figure 8. 

Work Zone (EC3). The participant vehicle was following LV at set speed of 55 mph. The LV 

moved to the left lane to reveal a work zone in the right lane ahead. The participant needed 

to slow down to allow the left lane to clear and safely change lanes to avoid the work zone. 

See Figure 8. 
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Fast-Moving Vehicle Merging On (EC4). The participant vehicle was travelling in the right 

lane with the ACC speed set at 60 mph and no LV ahead. Another vehicle was merging onto 

the roadway into the right lane, while travelling at a higher speed than the participant 

vehicle. In this case, the participant did not necessarily need to intervene with the ACC 

system as the merging vehicle was ahead of the participant vehicle. 

Slow-Moving Semi-Truck (EC5). This scenario occurred on a curved portion of a highway 

on-ramp. Prior to taking the on-ramp, the participant was instructed to move to the left 

lane and adjust the set speed to 45 mph. A slow-moving semi-truck appeared midway 

through the ramp in the right lane. As ACC cannot always properly detect lead vehicles on 

hills or curves, the ACC detected the semi-truck as being a LV in the participant vehicle’s 

lane, thus incorrectly reducing the participant vehicle’s speed until it had passed the semi-

truck. The participant did not need to intervene with the ACC system. 

Offset Lead Vehicle (EC6). The participant vehicle (ACC speed set at 70 mph) followed the 

LV at 65 mph for about 6 minutes, at which point the LV drifted towards the right-hand 

shoulder. Similar to the Slow-Moving Motorcycle event (EC2), the simulation was designed 

to not detect the LV when it was offset in its lane as it was not positioned directly ahead of 

the participant vehicle. At this point, the participant vehicle’s speed returned to 70 mph. 

The participant had to intervene in order to allow the traffic in the left lane to clear and 

safely pass the LV. See Figure 8.  

State Transitions 

Five system states that the ACC system could be in were identified and are described in 

Table 3. Throughout the drive participants were instructed to perform nine state 

transitions (ST1–9) as shown labeled in green on the map in Figure 7. These prescribed 

state transitions are described in Table 4. Additionally, state transitions could arise as a 

result of driver inputs or reactions to the edge case scenarios (e.g., to avoid a slow-moving 

vehicle revealed in their lane ahead). Drivers were not told what action to take in these 

situations and in most instances, there were several potential responses (i.e., take no 

action, brake to put the vehicle in standby mode, use the ACC lever to put the vehicle in 

standby mode, or turn the system completely off using the ACC lever). Potential state 

transitions related to the edge cases are described in Table 5. 

Table 3. Possible System States 

System state Description 

0 System ACC is off (neither ACC nor standard cruise control is activated) 

1 ACC is on but no speed set (standby mode) 

2 ACC is on with a set speed 
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Table 4. Description of Prescribed State Transitions During the Experimental Drive 

 Instruction Required Action 
System State/ 

Transition 

ST1 Turn on ACC Press ACC button 0 to 1 

ST2 Set ACC speed to 70 mph Press ACC lever down 1 to 2 

ST3 Change following gap to Short Press gap button on steering wheel twice 2 

ST4 Change ACC speed to 55 mph Press ACC lever down to decrease speed 2 

ST5 Change ACC speed to 70 mph Press ACC lever up to increase speed 2 

ST6 Change ACC speed to 60 mph Press ACC lever down to decrease speed 2 

ST7 Change following gap to Long Press gap button on steering wheel once 2 

ST8 Change ACC speed to 45 mph Press ACC lever down to decrease speed 2 

ST9 Change ACC speed to 70 mph Press ACC lever up to increase speed 2 

 

Table 5. Description of Potential State Transitions During Edge Case Scenarios 

 
Description Driver Action 

System State / 
Transition 

EC1 Slow-Moving Vehicle 

Brake (puts system in standby) 2 to 1 

Put system in standby using lever 2 to 1 

Turn system off using lever 2 to 0 

EC2 Slow-Moving Motorcycle 

Brake (puts system in standby) 2 to 1 

Put system in standby using lever 2 to 1 

Turn system off using lever 2 to 0 

EC3 Work Zone 

Brake (puts system in standby) 2 to 1 

Put system in standby using lever 2 to 1 

Turn system off using lever 2 to 0 

EC4  Fast-Moving Vehicle Merging 

No action 2 

Brake (puts system in standby) 2 to 1 

Put system in standby using lever  2 to 1 

Turn system off using lever 2 to 0 

EC5 Slow-Moving Semi-Truck 

No action 2 

Brake (puts system in standby) 2 to 1 

Put system in standby using lever 2 to 1 

Turn system off using lever 2 to 0 

EC6 Offset LV 

Brake (puts system in standby) 2 to 1 

Put system in standby using lever 2 to 1 

Turn system off using lever 2 to 0 
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Results 

Thirty-seven participants, 16 males and 21 females, with an average age of 42 years, 

completed the 6 months of data collection and were included in the analysis of the mental 

model questionnaire by exposure to and experiences with ACC. Two participants were 

dropped from the study due to continued failure to provide their weekly mileage and ACC 

usage information.  

Of those who completed data collection, twenty-seven participants, nine males and 18 

females, with an average age of 45 years, were able to complete the simulator drive at the 

end. Nine participants were unable due to COVID-19 restrictions which coincided with the 

end of their 6-month window. One participant was dropped due to technical issues with the 

simulator. Additional analyses were performed using the data from these twenty-seven 

participants to map their MMA scores as well as exposure and experience onto driving 

performance in the simulator. 

Data Reduction  

For each of the MMAs completed, scores were calculated to arrive at an overall score as well 

as individual scores on specific items corresponding to the functionality and limitations of 

the ACC system. To account for a different number of items regarding functionality and 

limitations, percentage correct scores were used in all analyses. The open-ended questions 

were manually coded and scored based on key words or ideas according to a predetermined 

set of criteria. Confidence scores were calculated by averaging their ratings of confidence 

(i.e., high confidence=4, moderate confidence=3, slight confidence=2, or no confidence=1) 

across the different categories of questionnaire items (i.e., functionality, limitations, and 

overall) and converting that score to a percentage by dividing by 4. 

Raw simulator data (sampled at 240 Hz) were reduced using custom MatLab scripts to 

generate summary measures for each participant for each event. For each driver, individual 

events were excluded if the setup failed (e.g., driver changed lanes just before the event) or 

if other aspects of the event functioned incorrectly (e.g., ambient traffic failed to maintain 

set gaps). Overall, 3.6% of individual events (4 of 111) were excluded from the analyses for 

these reasons. Analysis of driving performance included data from three of the edge case 

events, the offset lead vehicle (EC6), slow-moving motorcycle (EC2), and work zone (EC3) 

events. Initial response was calculated as the minimum of the time to deactivate ACC with 

the brake and time to initiate a steering response, measured by a change in steering wheel 

angle greater than five degrees. Data from the slow-moving vehicle (EC1) event were not 

included in the analysis because, unlike the three events that were included, ACC 

responded to the lead vehicle and therefore participants may not have responded while still 

avoiding a collision. Data from the fast-moving vehicle merging (EC4) and slow-moving 

semi-truck (EC5) events were also not included in the analysis. Ad hoc review of simulator 

and video data from this event indicated inconsistent responses by the ACC system to these 

events, which made it difficult to understand subsequent driver responses.  

As noted above, this project represents the second study in a line of research to explore the 

impact of drivers’ mental models on performance. The previous study in this research 
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program used a combination of screening and training to establish two groups of 

participants, one with weak mental models and one with strong mental models (Gaspar et 

al. 2020). These groups were also compared against the participants in the current study to 

understand how mental models following exposure compare to established levels of 

understanding and how understanding translates to driving performance. For those 

analyses, the groups from the first study are labeled “strong” and “weak” and the 

participants from this study are labeled “exposure.” For driving data from the strong and 

weak groups, the same reduction procedure was applied.  

All analyses were conducted in R (R Core Team, 2016) using the reduced data sets.  

Mental Model Assessment Over Exposure 

The initial analysis focused on whether performance and confidence on the MMA improved 

over time. The objective was to understand whether overall scores, functionality scores, and 

limitations scores changed over time and to what extent participants’ understanding of 

ACC improved over 6 months.  

Figure 9 shows overall MMA scores, MMA confidence, and scores on functionality and 

limitation questions over the 6-month data collection window. Table 6 shows mean MMA 

scores and confidence by week. Paired t-tests were performed to compare the scores on 

these four MMA measures between weeks 1 and 24, the first and last test sessions.  

There was a nominal increase in overall MMA scores between weeks 1 and 24 

(approximately 6 percentage points on average), although the difference between the first 

and last test sessions was only marginally significant (t(36)=1.76, p=0.08). There was a 

significant increase in confidence (14 percentage points on average) in responses to MMA 

questions in the last session compared to the first (t(36)=4.59, p<0.001). There was a slight 

decrease in scores on MMA questions related to system functionality (t(36)=0.66, p=0.51). 

Figure 9 shows that this may have been due to a ceiling effect for functionality-related 

questions. Finally, although there was a nominal increase in MMA scores related to system 

limitations, the difference between sessions was only marginally significant (t(36)=1.80, 

p=0.07).  
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Figure 9. MMA Overall (A), Confidence (B), Functionality (C), and Limitations (D) Scores 

 
Black points represent individual participants and red circles represent session means. 

 

 

Table 6. Mean MMA Component Scores by Week (%) 

Week Overall Function Limitations Confidence 

1 68.6 89.5 57.5 70.6 

2 69.9 88.5 60.0 72.6 

4 73.7 90.2 64.5 79.4 

8 73.2 87.5 65.6 80.2 

16 70.6 86.8 64.3 82.5 

24 74.9 87.8 65.9 84.1 

MMA Clusters 

Lenneman et al. (2020) identified clusters of learners about driver support features (DSF) 

over a 6-month window based on semi-structured interviews and exposure to the DSF. The 

five resulting clusters comprised different combinations that can be roughly categorized 

based on level of understanding (i.e., mental model strength) and confidence in 
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understanding. That is, clusters were defined not only by actual understanding of vehicle 

technology, but also by confidence in that level of understanding. Interestingly, Lenneman 

et al. (2020) found that one cluster of learners, dubbed “misinformed,” had poor overall 

understanding of the technology but high confidence in their understanding. 

To identify whether there were groups of learners in this study that differed in 

combinations of MMA performance and confidence in MMA understanding, we performed a 

cluster analysis similar to that performed by Lenneman et al. (2020). Data included in the 

cluster analysis were overall MMA score (% correct) and MMA confidence score (%) from 

the final test session (i.e., week 24).  

After scaling the data, we applied the elbow method in Python to determine the initial 

number of plausible clusters (Figure 10). This method indicated that four clusters was the 

optimal number.  

Figure 10. Cluster Diagnostics to Identify Optimal Number of Clusters 

 

A k-means cluster analysis was performed using the k-means function in R to divide 

participants into 4 groups (Table 7). Figure 11 shows a cluster map of the four groups based 

on combined MMA scores and confidence scores. They were assigned the following names: 

 Strong Confident (SC). Cluster 2 in Figure 11. These participants had high final 

MMA scores and high confidence. 

 Strong Unconfident (SU). Cluster 1 in Figure 11. These participants had high final 

MMA scores with lower confidence. 

 Weak Unconfident (WU). Cluster 4 in Figure 11. These participants had low final 

MMA scores and low confidence. 

 Weak Confident (WC). Cluster 3 in Figure 11. These participants had lower final 

MMA scores but were confident in their responses. 
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Figure 11. Cluster plot showing the four clusters based on scaled (z-score) MMA score (overall 
%) and confidence 

 

Table 7. Number of Participants, Mean Overall MMA, and Confidence by Cluster Group 

Cluster N MMA Confidence 

SC 10 90.5 93.6 

SU 8 87.5 75.0 

WC 12 67.0 89.8 

WU 7 51.6 71.1 

Changes in Mental Models by Cluster Group 

We were interested in whether there were differences in mental model development and 

confidence across the different cluster groups. Figure 12 shows MMA scores and confidence 

scores for the four cluster groups across the 24-week exposure. To examine whether there 

were differential changes in mental model strength and/or confidence, we computed 

ANOVAs with cluster group as a between-subjects factor and test session (first vs. last) as a 

within-subjects factor.  
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Figure 12. MMA Scores and Confidence Scores for the Four Cluster Groups Across the 24-
Week Exposure 

 

Differential improvement is reflected in the interaction between cluster group and test 

session. Table 8 shows the change in mean overall MMA score and confidence score for each 

of the four clusters. For overall MMA score, there was a significant interaction between 

cluster group and test session (F(3,33)=2.83, p=0.05). Both strong mental model cluster 

groups showed improvement on the MMA from the first to last session, whereas the weak 

cluster groups did not show improvement and actually showed lower mean scores in the 

final test session compared to the first. For mental model confidence, both of the confident 

clusters showed improved confidence scores between the first and last test session. The 

unconfident groups showed less of an increase in confidence scores between sessions. 

Table 8. Change in Mean MMA and Confidence by Cluster Group Between First and Last Test 
Session 

Cluster N MMA Confidence 

SC 10 15.2 19.2 

SU 8 25.0 2.8 

WC 12 −3.6 18.5 

WU 7 −11.2 8.9 



 

18 

 

 

Relationship Between Mental Models and Driving Performance 

The next step in the analysis was to examine the relationship between mental model 

quality and driving performance. Previous research showed that groups of drivers with 

strong and weak mental models had differences in performance in the same set of edge-case 

scenarios (Gaspar et al., 2021). 

For driving performance, the key measure of interest was initial response time in the edge 

case events. Smaller initial response times indicate that drivers responded earlier, either by 

deactivating ACC with the brake or steering (note that all ACC deactivations occurred with 

the brake). Previous research showed that faster initial responses resulted in larger safety 

margins and seemed to reflect lower indecision in how the ACC system would respond 

(Gaspar et al., 2021).  

To understand the relationship between mental model quality and driving performance, we 

computed the correlation between initial response time and MMA score from the final test 

session (Figure 13). The correlation between initial response time and MMA score was not 

significant for the offset lead vehicle event (t=0.13, p=0.90), slow-moving motorcycle event 

(t=1.61, p=0.12), or the work zone event (t=0.15, p=0.89). This indicates that performance 

on the final mental model assessment did not predict performance in the edge case driving 

events for this sample of 27 drivers. 
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Figure 13. Initial response time by MMA score. Points represent individual participants. 

 

Comparison with Weak and Strong Mental Model Groups 

A key interest of this study was understanding how a group of drivers with 6 months of 

exposure to ACC, without additional training, compared to groups of drivers with 

established strong and weak mental models of ACC. We hypothesized that drivers with 

6 months of exposure would have stronger mental models of ACC compared to drivers who 

had limited training and system exposure (from Gaspar et al., 2021). We further predicted 

that drivers with 6 month of exposure would have weaker mental models compared to a 

group of drivers who received extensive training (again from Gaspar et al., 2021). We also 

predicted that these differences in mental model strength would translate to differences in 

driving performance and that these differences could be predicted by MMA score. 

Driving and MMA data from this study were merged with driving data from the previous 

study with strong and weak mental model groups. These analyses used data from the final 

MMA test session (i.e., session 6). It is important to note that the instructions given to 

participants and the edge case scenarios they encountered were identical between these two 

studies. 

Our first question was how the mental models of the exposure group compared to those of 

the strong and weak mental model groups. Figure 14 shows MMA overall scores for each of 

the three groups. There was a significant main effect of group on MMA score 

(F(2,114)=144.0, p<0.001). Paired comparisons showed the exposure group had higher MMA 
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scores than the weak group from the previous study (p<0.001) and lower scores than the 

strong group from the previous study (p<0.001).  

Figure 14. Overall MMA Scores for the Exposure Group from this Study and Strong and Weak 
Groups from the Previous Study 

 
Red points represent group means and black points represent individual participants. 

 

We next compared initial response time across the three edge case events for each of the 

three groups. Figure 15 shows initial response times by group and edge case event. There 

was a significant main effect of group on initial response time (F(2,114)=13.68, p<0.001). 

There was also a main effect of event (F(2,114)=13157.65, p<0.001). Finally, there was a 

significant interaction between group and event (F(2,114)=3.13, p=0.02). Pairwise 

comparisons were performed on initial response time from each event to compare group 

means. For the offset lead vehicle event, both the strong and exposure groups had 

significantly faster response times than the weak group (p=0.02). The difference between 

the strong and exposure groups was not significant (p=0.85). For the slow-moving 

motorcycle event, the strong group had significantly faster response times than both the 

exposure (p=0.02) and the weak group (p<0.001). For the work zone event, the strong group 

had significantly faster responses than the weak group (p=0.04). The differences between 

the exposure group and the strong (p=0.42) and weak (p=0.41) groups were not significant. 
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Figure 15. Initial Response Time in Edge Case Events 

  

Red points represent group means and black points represent individual participants. 
 

Finally, we examined the relationship between MMA score and driving performance in this 

combined dataset. We calculated the correlation between MMA score and initial response 

time separately for each of the three edge case events (Figure 16). There were significant 

negative correlations between MMA score and initial response time for the offset lead 

vehicle event (p=0.05), the slow-moving motorcycle event (p<0.001), and the work zone 

event (p<0.001). These results show that participants with higher scores on the MMA were 

faster to respond in all three edge case situations where ACC did not respond.  
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Figure 16. Scatterplots of Initial Response Time by MMA Score 

 

Points represent individual participants, shaded by group. 

 

Discussion 

The objective of this study was to understand how mental models of ACC change over time 

and to map understanding of vehicle technology to driving performance. Using a mental 

model evaluation tool, the MMA, mental models were tracked over 6 months for a group of 

new owners of vehicles equipped with ACC. At the end of that 6-month period, participants 

completed a simulator drive in which they experienced edge case events where ACC 

encountered functional limitations. This group of participants, who learned through 

experience, was also compared with participants from an earlier study (Gaspar et al., 2021) 

who had strong or weak mental models instilled through experimental procedures.  

Over the 6-month window, participants in this study showed slight improvements in 

mental models, reflected by scores on the MMA. When the MMA was decomposed into 

questions pertaining to functionality or limitations, it was clear that understanding of 

functionality was near ceiling for most of the participants throughout the exposure window 

and did not change over time. Understanding of system limitations, on the other hand, 

showed slight increases and seems to have driven the overall change in MMA scores. 

Confidence in responses on the MMA also increased over the 6-month window. This adds to 

the findings presented by Rossi et al. (2020) and Beggiato et al. (2015), which found that 

knowledge and understanding of the functionality of ACC occurs rather quickly while 
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limitations are more difficult for first time users as they are mostly learned over time 

through experience (Larsson, 2012; Beggiato et al., 2015).  

Following Lenneman et al. (2020), clusters of learners with respect to MMA scores and 

confidence were identified. We performed a k-means cluster analysis using data from the 

final mental model evaluation, consisting of overall MMA score and confidence in 

responses. This cluster analysis revealed four groups, with different levels of mental model 

quality and mental model confidence.   

We examined whether cluster affiliation was associated with different learning patterns 

over the 6-month exposure. Two of the groups (strong confident and strong unconfident) 

showed significant improvement on the MMA over the 6-month evaluation period. The 

other two groups (weak confident and weak unconfident) did not show improvement over 

the 6-month window, and in fact actually showed poorer MMA performance at week 24 

than at week 1. These results also revealed that some participants were well calibrated in 

their mental model confidence, while others were not. Specifically, the strong unconfident 

group performed well on the MMA but had lower confidence in their responses. Perhaps 

most concerningly, the weak confident cluster group had high confidence in their MMA 

responses—and increasing confidence over time—despite relatively low scores. 

Misalignment of knowledge or skills and confidence has been touted as particularly 

problematic in a number of domains, including driving (e.g., Kruger & Dunning, 1999; 

Deery, 1999; Horrey et al., 2015).   

With respect to the relationship between mental models and driving performance, we 

examined the correlation between initial response time in the edge case events and overall 

performance on the MMA. There was not a significant correlation between response time 

and MMA scores for the twenty-seven participants in this study. The lack of a correlation 

between MMA scores and driving performance is most likely due to the small sample size, 

which was further reduced due to COVID-19 limitations. This is supported by the fact that 

when the same relationship was examined in the combined data set, with data from the 

exposure, strong, and weak mental model groups, there were strong negative correlations 

between MMA scores and response times for each of the three edge case events. These 

combined data further support the conclusion from Gaspar et al. (2021) that mental model 

strength is linked to driving performance. One benefit of stronger mental models appears to 

be that they reduce uncertainty in rare situations where the system encounters its 

performance boundaries (Gaspar et al., 2021; Victor et al., 2018).  

Finally, the combined dataset, including both the exposure group and the strong and weak 

groups from the previous study, was used to compare the mental model strength and 

driving performance across different groups. For both MMA scores and driving 

performance, the exposure group from this study fell between the strong and weak mental 

model groups. The exposure group had stronger mental models than the weak group but 

weaker than the strong group. Similarly, in general the exposure group was faster to 

respond in edge cases than the weak group but slower than the strong group. These results 

suggest that 6 months of exposure yielded, on average, mental models of ACC that were 

better than the weak group, who received almost no training, and poorer than the strong 

group with extensive training. Six months of exposure was sufficient to improve 

performance relative to a group that received little training, but not enough to achieve the 
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robust mental models seen in the strong group. This finding further underscores the need of 

training and education for proper use and interactions. 

These results show that mental models improve over 6 months (for some drivers), but not to 

the level of understanding of a group that received a short but extensive introduction to 

ACC. This suggests that there is room for improvement in how drivers gain understanding 

about driver support features. Additional research is needed to understand how different 

approaches (e.g., instruction materials, in-vehicle training) might be used to augment 

experience in the development of mental models. The results also suggest that training 

methods should focus on understanding the limitations of particular driver support 

features, as this is often the weaker component of mental models but also more important 

for appropriate responses in edge case situations.  

This research raises several important questions for future research. While the results 

show some improvement in mental models over time, particularly with respect to 

understanding of ACC limitations, there is little insight into what factors caused mental 

models to change and whether particular factors were common across drivers who showed 

improvement on the MMA. The data also do not speak to why some drivers improved while 

others did not. Additional, larger datasets are needed to understand how individual 

differences in learning and understanding translate to performance in the context of driver 

support features. Moreover, future research needs to examine how the current results 

relate to other forms of vehicle technology, beyond ACC. 

A key unanswered question in this space is how good mental models need to be for safe, 

effective, and enjoyable use of a vehicle technology. What threshold do drivers need to reach 

in terms of understanding? The results of this study suggest that there are advantages to 

increasing understanding up to the point where drivers have a thorough knowledge of both 

the function and limitations of a particular system. However, there may be costs (e.g., time, 

money) that prevent such rigorous training and therefore it is important to define the 

minimum understanding necessary. 

Another important area for further research is to examine how the quality of a driver’s 

mental model impacts other in-vehicle behaviors, such as their willful engagement in non-

driving related tasks. Though they did not focus on mental models per se, Dunn et al. (2020; 

2021) found that drivers with varying degrees of exposure with new technology tended to 

exhibit different propensities towards distracting/secondary tasks in situations where the 

technology required that they remain alert and attentive.  

Several limitations should be mentioned. The sample size of this study was relatively small, 

and the sample included in analyses of driving data was further reduced due to COVID-19 

restrictions at the time some participants completed the study. One takeaway from the 

results is that there is considerable variability in mental models across individuals. This is 

reflected in the different mental model cluster groups. Larger samples are necessary to 

understand individual differences in mental models and learning about driver support 

features. A larger sample would also be necessary to understand how cluster groups 

differed in terms of driving performance. That is, did the cluster groups show differences in 

driving performance that might be explained by their levels of understanding and 

confidence?  
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Other issues with sampling may have also impacted the variability in the final dataset. 

Specifically, drivers were eligible to participate if they purchased a vehicle with any ACC 

system. However, there are considerable differences between the design, function, and 

limitations of different ACC features. While beyond the scope of this study, it will be 

important to understand whether some ACC systems are more difficult to learn than 

others, and how understanding of one system translates to another system (i.e., transfer of 

training). Driving performance was only collected at week 24, after 6 months of exposure to 

ACC. Because there was no initial evaluation of driving performance, it is impossible to say 

whether performance improved over 6 months and whether changes in driving performance 

were related to evolving mental models and/or mental model confidence.  

In sum, this study provides an important step in understanding the relationship between 

mental models of driver support features and driving performance. The results can be used 

to help guide future research to identify minimum mental model thresholds for vehicle 

technology and the development and refinement of novel approaches to learning about 

vehicle technology.  
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Appendix A—Mental Model Assessment 

The following questions will ask you about your current understanding of Adaptive Cruise 

Control (ACC). For each question, please indicate whether the statement is "True" or 

"False", then rate your confidence in your response. 
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Appendix B—Training Presentation 
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