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Executive Summary 
 
The goal of this research was to examine the impact of voice-based interactions using three 
different intelligent personal assistants (Apple’s Siri, Google’s Google Now for Android 
phones, and Microsoft’s Cortana) on the cognitive workload of the driver.  In two 
experiments using an instrumented vehicle on suburban roadways, we measured the 
cognitive workload of drivers when they used the voice-based features of each smartphone 
to place a call, select music, or send text messages.  Cognitive workload was derived from 
primary task performance through video analysis, secondary task performance using the 
Detection Response Task, and subjective mental workload.  We found that workload was 
significantly higher than that measured in the single-task drive. There were also 
systematic differences between the smartphones: The Google system placed lower cognitive 
demands on the driver than the Apple and Microsoft systems, which did not differ in this 
regard.  Video analysis revealed that the difference in mental workload between the 
smartphones was associated with the number of system errors, the time to complete an 
action, and the complexity and intuitiveness of the devices.  Finally, surprisingly high 
levels of cognitive workload were observed when drivers were interacting with the devices - 
“on-task” workload measures did not systematically differ from that associated with a 
mentally demanding memory/math OSPAN task.  The analysis also found residual costs 
associated with using each of the smartphones that took significant time to dissipate.  The 
data suggest that caution is warranted in the use of smartphone voice-based technology in 
the vehicle because of the high levels of cognitive workload associated with these 
interactions.   
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Introduction 
 
Driver distraction, operationalized here as “the diversion of attention away from activities 
critical for safe driving toward a competing activity” (Regan, Hallet, & Gordon, 2011; see 
also Engström, et al., 2013; Regan & Strayer, 2014), is increasingly recognized as a 
significant source of injuries and fatalities on the roadway.  The U.S. Department of 
Transportation estimated that in 2013, 3,154 people were killed and an additional 424,000 
were injured in motor vehicle crashes involving driver distraction on U.S. roadways 
(Pickrell, 2015); however, the report acknowledged limitations to the way the that the data 
were collected and suggested that the actual number is likely much higher.  In support of 
this, a recent report by the AAA Foundation for Traffic Safety found that 58% of all crashes 
among teenage drivers could be attributed to driver inattention (Carney et al., 2015).  
 
The National Highway Safety Traffic Administration (NHTSA) is in the process of 
developing voluntary guidelines to minimize driver distraction created by electronic devices 
in the vehicle.  There are three phases to the NHTSA guidelines.  The Phase 1 guidelines, 
entered into the Federal Register on March 15, 2012, address visual-manual interfaces for 
devices installed by vehicle manufactures.  The Phase 2 guidelines, scheduled for release 
sometime in 2015, will address visual/manual interfaces for portable and aftermarket 
electronic devices.  Phase 3 guidelines (forthcoming) will address voice-based auditory 
interfaces for devices installed in vehicles and for portable aftermarket devices.  
 
In order to allow drivers to maintain their eyes on the driving task, nearly every vehicle 
sold in the US and Europe can now be optionally equipped with a voice-based interface.  
Using voice commands, drivers can access functions as varied as voice dialing, music 
selection, GPS destination entry, and even climate control.  Voice activated features may 
seem to be a natural development in vehicle safety that requires little justification.  Yet, a 
large and growing body of literature cautions that auditory/vocal tasks may have 
unintended consequences that adversely affect traffic safety. 
 
In 2013, we reported on a methodology for assessing cognitive distraction in the vehicle 
(Strayer et al., 2013). Converging measures of mental workload from primary and 
secondary task performance, physiological recordings, and self-reports, were used to 
develop a rating system for cognitive distraction where non-distracted single-task driving 
anchored the low-end (Category 1) and the mentally demanding Operation Span (OSPAN) 
task anchored the high-end (Category 5) of the scale. 
 
In 2014, we reported on an extension of our earlier methods designed to measure cognitive 
workload in six 2013 vehicles equipped with voice-based technology that facilitates tuning 
the radio and placing outgoing calls.  We found striking differences in the workload ratings 
associated with the different systems, with the Toyota system having a workload rating 
roughly equivalent to listening to a book on tape and the Chevy system having one of the 
highest workload ratings we have observed for any in-vehicle task. Clearly, the user 
interface had a large impact on driver workload, frequency of errors, and time to complete 
the various tasks. 
 
One alternative to using a vehicle’s embedded voice controls for many common tasks is the 
smartphone. The advantage of these systems is that they are already commonly available, 
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they are constantly being updated, they are familiar to drivers, and they offer nearly 
limitless capabilities.  In this report, we present the findings of two on-road driving 
experiments designed to measure the cognitive workload associated with interactions using 
three different intelligent personal assistants (Apple’s Siri, Google’s Google Now for 
Android phones, and Microsoft’s Cortana) on the cognitive workload of the driver1.   
 
The selected tasks and experimental structure were designed to extend our prior work 
using embedded vehicle systems (Cooper et al., 2014).  In the first experiment, we 
evaluated the cognitive demand of common voice interactions while driving.  In the second 
experiment, we evaluated the cognitive demands associated with sending voice-based text 
messages.  How do the different smartphone systems compare with each other and what 
are the bases for any observed differences in the cognitive workload experienced by the 
driver?  How do these smartphone systems compare with embedded systems found in the 
different OEM systems?   

                                            
1 In our discussions with representatives from Google, they indicated that: “the Google voice system 
that you are planning to test has never been promoted for in-vehicle use by Google.  And though we 
understand that some users may engage in this type of activity, Google does not encourage this 
behavior.” 
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Methods 
 
Experiment 1 

Participants 
Following approval from the Institutional Review Board, participants were recruited by 
word of mouth, advertisements placed on online local classified websites, and flyers posted 
on the University of Utah campus.  They were compensated $60 upon completion of the 2.5-
hour study. Data were collected from February 27th 2015 through April 14th of 2015. 
 
Thirty-one subjects participated in Experiment 1 (16 males, 15 females).  The youngest 
participant was 21 and the oldest was 68 years old, with an average age of 42.  The Division 
of Risk Management Department at the University of Utah ran a Motor Vehicles Record 
report on each prospective participant to ensure participation eligibility based on a clean 
driving history (e.g., no at-fault accidents in the past five years).  In addition, following 
University of Utah policy, each prospective participant was required to complete a 20-
minute online defensive driving course and pass the certification test.  Participants were 
selectively recruited to balance gender across the eligible age range.  Everyone who 
participated in this research owned a smartphone and 64% reported using their phone 
regularly while driving.  Participants reported between 5 and 52 years of driving experience 
with the average being 26 years.  Additionally, participants reported driving an average of 
200 miles per week over 8.5 hours.  All participants were recruited from the greater Salt 
Lake area and spoke with a western US English dialect. 
Design 
A 5 (condition) x 3 (age groups) mixed within and between subjects design was used.  The 5 
within-subject conditions were: Single-task, Apple’s Siri, Google’s Google Now, Microsoft’s 
Cortana and the OSPAN task.  The 3 between-subject age groups were: ages 21-34, ages 35-
53, and ages 54-70.  Each participant experienced each of the five experimental conditions 
in a counterbalanced order.  During interactions with the intelligent personal assistants, 
participants completed 2 number dialing tasks, 2 contact calling tasks, and 4 music 
selection tasks presented in 2 blocks. 
In addition, some of the dependent measures used in the study allowed the differentiation 
of on-task and off-task performance during the three intelligent personal assistant 
conditions.  For these analyses, an 8(condition) x 3(age group) design was used. 
Materials and Equipment 
 Access to intelligent personal assistants engineered by Apple, Google, and Microsoft, was 
provided using an Apple iPhone 6 with iOS 8.2 (Build 12D508), a Google Nexus phone 
running Android 5.0.1 (Build LRby22C), and a Nokia Lumia 635 running Windows 8.1 (O.S. 
Version 8.10.12400.899), respectively.  Identical music and contacts libraries were loaded 
on to each of the phones, providing the basis for the task evaluations. 
 
An Apple “EarPods with Remote and Mic” was attached to each of the phones.  The right 
speaker lead was inserted into participants’ right ear and the left speaker lead was taped to 
the microphone input of the video collection system.  A small button, attached to the cord of 
the headphones controlled the activation / deactivation of each of the three intelligent 
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personal assistants.  This setup was selected because, at the time of testing, the single-ear 
system was legal in all 50 states.  By using identical headphones we could ensure that any 
potential differences between the phones were related to characteristics of the verbal 
interface, and not potential differences in audio quality, microphone sensitivity, or other 
aspects of the physical interface. 
 
Cellular phone service for all three systems was provided by T-Mobile.  Excellent cell 
coverage (4-5 bars) was available during the entire drive on all phones.  Phones were 
secured to the center console, just to the right of the steering wheel, using a universal 
suction mount that securely held each of the phones during interactions. 
 
The vehicles used in the experiment were a 2015 Chevy Malibu with an automatic 
transmission and a 2015 Chrysler 200c with an automatic transmission.2  Participants 
were familiarized with the vehicle and allowed to adjust the seat and mirrors before the 
study commenced.  Participants drove the vehicle for approximately 20 minutes before the 
experiment began. 
 
Two Sony Action Cams were used to collect video and audio feeds during experimentation.  
One was mounted to the front windscreen, just under the rear-view mirror, and faced the 
driver.  The other was mounted between the two front seats via a rigid pole attached to the 
passenger seat headrest; it captured a view of the vehicle interior, including the screen of 
each phone, as well as the forward roadway.  The two video feeds were synchronized for 
later video analysis. 
 
During all phases of testing, participants wore a head-mounted Detection Response Task 
(DRT) device that was manufactured by Precision Driving Research. The DRT protocol 
followed the specifications outlined in ISO WD 17488 (2015).  The device consisted of an 
LED light mounted to a flexible arm that was connected to a headband, a micro-finger 
switch attached to the participant’s left hand, and a dedicated microprocessor to handle all 
stimulus timing and response data.  The light was positioned in the periphery of the 
participant’s left eye (approximately 15° to the left and 7.5° above the participant’s left eye) 
so that it could be seen while looking at the forward roadway but did not obstruct their view 
of the driving environment.  The configuration used in this research adhered to the ISO 
standard 17488 with red LED stimuli configured to flash every 3-5 seconds.  Timing was 
controlled on Asus Transformer Book T100s with quad-core Intel® Atom™ processors 
running at 1.33GHz. 
 
An auditory version of the OSPAN task developed by Watson and Strayer (2010) was used 
to induce a high workload baseline during testing.  This task required participants to recall 
single syllable words in serial order while solving mathematical problems.  In the auditory 
OSPAN task, participants were asked to remember a series of two to five words that were 
interspersed with math-verification problems (e.g., given “[3  / 1] – 1 = 2?” – “cat” – “[2 x 2] 
+ 1 = 4?” – “box” – RECALL, the participant should have answered “true” and “false” to the 
math problems when they were presented and recalled “cat” and “box” in the order in which 
they were presented when given the recall probe).  In order to standardize presentation for 

                                            
2A preliminary analysis found that the data collected in the Chevy Malibu and Chrysler 200c 
vehicles did not differ.  
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all participants, a prerecorded version of the task was created and played back during 
testing. 
 
Subjective workload ratings were collected using the NASA TLX survey developed by Hart 
and Staveland (1988).  After completing each of the conditions, participants responded to 
each of the six items on a 21-point Likert scale ranging from “very low” to “very high.”  The 
questions in the NASA TLX were: 

a) How mentally demanding was the task? 
b) How physically demanding was the task? 
c) How hurried or rushed was the pace of the task? 
d) How successful were you in accomplishing what you were asked to do? 
e) How hard did you have to work to accomplish your level of performance? 
f) How insecure, discouraged, irritated, stressed, and annoyed were you? 

A study facilitator was assigned to ride with each participant for the duration of the study.  
Facilitators were trained to precisely administer the research procedure and adhered to a 
scripted evaluation protocol. Additionally, facilitators were to ensure the safety of the 
driver, provide in-car training, and deliver task cues to participants. All facilitators had 
current driver’s licenses and were over the age of 21. 
Procedure  
Upon arrival, participants filled out an IRB approved consent form and a brief intake 
questionnaire to assess basic characteristics of phone and driving usage. Once completed, 
drivers were familiarized with the controls of the instrumented vehicle, adjusted the 
mirrors and seat, and were informed of the tasks that would be completed while driving.  
Next, participants drove one circuit of the 2.7-mile loop, located in the Avenues section of 
Salt Lake City, UT in order to become familiar with the route itself.  The route provided a 
suburban/residential driving environment and contained seven all-way controlled stop 
signs, one two-way stop sign, and two stoplights. After the practice drive, participants 
began the experimental portions of the research.  Data collection occurred between the 
hours of 9 a.m. and 8 p.m., Monday through Saturday.  Driving conditions during data 
collection were sunny and clear with low traffic density. 
 
The first portion of training involved an introduction to the DRT device.  Participants were 
fitted with the device and were instructed on its functionality.  Once comfortable with the 
general procedure, they were allowed to practice with the DRT task until they felt 
comfortable.  In most cases, this took a couple of minutes. 
 
Two baseline conditions and three experimental conditions were evaluated during the 
course of the research.  The first condition was the single-task baseline.  During the single-
task condition, participants simply drove around the predefined driving course and 
responded to the lights generated by the DRT task. The second condition was a high 
workload condition in which participants drove while concurrently performing the OSPAN 
math and memory task.  In each of the other 3 conditions, participants completed a series of 
common secondary tasks using either Apple’s Siri, Android’s Google Now, or Microsoft’s 
Cortana.  
 
Six distinct tasks were given to participants during each of the conditions involving 
interactions with the intelligent personal assistants.  The tasks were initiated once 
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participants reached pre-specified locations on the course.  Participants were not told where 
on the course the new tasks would be given but the task onset location remained constant 
for interactions with each of the voice assistants.  Once tasks were completed, participants 
were allowed to return their undivided attention to the driving task until instructions were 
given for the subsequent task. Data were not collected during the turns.  All tasks began 
when participants pressed the micro button located on the Apple EarPods to initialize the 
voice command systems.  Once initiated, each of the tasks was completed through auditory 
+ vocal system interactions.  The tasks were presented to participants in a fixed order, 
progressing from Task 1 through Task 6 as participants circumnavigated the course.  
System interactions were as follows: 

Task 1: “Phone: Joel Cooper” 
Task 2: “Music: Fleetwood Mac” once completed… “Music: The Beatles” 
Task 3: “Phone: Own Number” 
Task 4: “Music: Stevie Wonder” once completed… “Music: Frank Sinatra” 
Task 5: “Phone: Amy Smith at work” 
Task 6: “Phone: Own number” 

Prior to evaluations of the three intelligent personal assistants, each of the systems 
underwent a standard reset and voice model training procedure.  This protocol was 
developed in conjunction with feedback from engineers working at Apple and Google. For 
the Apple iPhone, Siri and Siri dictation were reset for each participant prior to each run.  
In order to reset Siri, the following switch was toggled with each new participant: Settings -
> General -> Siri -> Siri Off/On. In addition, dictation was reset for each participant by 
toggling the following: Settings -> Keyboard -> Enable Dictation -> Off/On.  For the Android 
phone, the Google Now digital assistant was retrained prior to each drive through a simple 
voice training provided by Google, accessible through the following menu: Settings -> 
Language & Input -> Voice input -> Enhanced Google Services -> “Okay Google” Detection -
> Retrain Voice Model.  There was no voice training protocol for the Microsoft windows 
phone. 
 
After each phone was ready for use, participants were allowed to explore the various 
functionalities of the voice assistant and were required to successfully retrieve the answer 
to 8 of the following 10 questions. 

1. What is the time in Sydney, Australia? 
2. What is the tallest mountain in the world? 
3. Who is the Speaker of the House in the United States? 
4. What is the weather outside? 
5. Where is the closest gas station? 
6. When did we land on the moon? 
7. What is 26 x 26? 
8. What area code is 801?  
9. What is 1 + 2 + 3 + 4? 
10. What are the first 4 digits of pi?  

Once completed, participants were given a brief training on number dialing, contact calling, 
and music selection.  Before each run, participants were then asked to complete a series of 
contact calling, number dialing, and music selection tasks until they reached proficiency. 
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Participants were then familiarized with the specific requirements of the upcoming 
condition and were told that their task was to follow the route previously practiced while 
complying with all local traffic rules, including obeying a 25 mph speed restriction.  
Throughout each 10-minute condition, the driver completed the DRT.  Safety directions 
were reiterated before each driving condition.  At the conclusion of the study, participants 
returned to the University parking lot and they were compensated for their time and 
debriefed. 
Dependent Measures 
Cognitive workload was determined by collecting several dependent measures.  These were 
derived from the DRT task, subjective reports, and analysis of video recorded during the 
experiment. 
DRT data were cleaned following procedures specified in ISO 17488 (2015).  Consistent 
with this standard, all responses briefer than 100ms or greater than 2500ms were rejected 
for calculations of Reaction Time (RT).  Responses that occurred later than 2.5 seconds from 
the stimulus onset were coded as misses.  Any DRT data collected around turns was 
removed from the analysis.  During testing, task engagement was flagged by the 
experimenter through a keyboard that facilitated comparison of performance in the 
secondary-task smart phone conditions when the participant was actively engaged in an 
activity (on-task) or had finished that an activity and was operating the vehicle without 
secondary-task interaction (off-task). 
• DRT –Reaction Time (both on-task and off-task).  Defined as the sum of all valid 

reaction times to the DRT task divided by the number of valid reaction times.  
• DRT – Hit Rate (both on-task and off-task).  Defined as the number of valid responses 

divided by the total number of stimuli presented during each condition. 

Following each drive, participants were asked to fill out a brief questionnaire that posed 8 
questions related to the just completed task.  The first 6 of these questions were from the 
NASA TLX task, the final 2 were questions added to assess the intuitiveness and 
complexity of the tasks. 
• Subjective – NASA TLX.  Defined as the response on a 21-point scale for each of the 6 

subscales of the TLX (Mental, Physical, Temporal, Performance, Effort, and 
Frustration). 

• Subjective – Intuitiveness and Complexity.  Defined as the response on a 21-point scale 
to 2 questions on task intuitiveness and complexity. 

Three critical performance metrics were distilled from coding the video recorded during 
testing.  These were time to complete the task, error count, and average driving speed.  The 
task completion time was defined as the time from the moment participants first pressed 
the voice activation button to the time that the same button was pressed to terminate a 
task.  Task completion time reflects the average task duration across the 6 tasks 
• Video Analysis – Vehicle Speed.  Average driving speed was derived from the time 

required to traverse the northern and southern legs of the route.  During video coding, 
the time that corresponded to the start and end sections of roadway was recorded.  The 
total distance of these two roadway sections was 2.39 miles. 

• Video Analysis – Error count.  Defined as the total number of system errors that arose 
during the 6 tasks.  System behaviors classified as errors were: Instances when the 
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system was unresponsive to the users intention (e.g., not carrying out any action at all 
or indicating that the user should try again); instances where the system understood 
what the participant said but carried out an action that was inconsistent with the 
participants expectations (e.g., searching the internet for Stevie Wonder rather than 
playing a music selection by Stevie Wonder); instances where the system failed to 
correctly understand the words spoken by the user (e.g., “calling Jane Doe” instead of 
“calling John Doe”); and instances where the system entered an error state due to a 
pacing error by the participant (e.g., speaking prior to the tonal listening cue). 

• Video Analysis – Task Completion Time.  Defined as the time from the moment the 
voice activation button on the headphones was pressed to initiate a task to the time the 
button was pressed to terminate a task. 

To assess the overall performance of each of the three intelligent personal assistants (Siri, 
Google Now, and Cortana), the three classes of voice tasks completed during this 
experiment (number dialing, contact calling, and music selection) were aggregated. Thus, 
workload measures presented in this report are a general reflection of overall system 
performance and are not specifically indicative of performance on any one of the tasks. 
 
Experiment 2 

In Experiment 1, we tested a variety of voice-based interactions that are common in many 
OEM vehicles (e.g., Cooper et al., 2014).  However, smartphones have additional voice-
based capabilities that go beyond dialing and music selection.  In Experiment 2 we tested 
the voice-texting features of these phones to determine how these seemingly more complex 
interactions would affect the driver’s performance while operating a motor vehicle.  We kept 
the testing protocol identical to that used Experiment 1, with the exception that the dialing 
and music selection tasks were replaced with sending short text messages. 
Participants 
Thirty-four subjects participated in Experiment 2 (19 males, 15 females).  Participants were 
recruited using the same methods as Experiment 1.  All data were collected from March 
26th 2015 through April 19th of 2015.  The youngest participant was 22 and the oldest was 
68 years old, with an average age of 42.5.  All eligibility requirements were identical to 
those used in Experiment 1.  Participants reported between 4 and 52 years of driving 
experience with the average being 26.8 years.  Additionally, participants reported driving 
an average of 207 miles per week over 9.3 hours.  All participants were recruited from the 
greater Salt Lake area and spoke with a western US English dialect. 
Materials and Equipment 
 The equipment used in Experiment 2 was identical to that used in Experiment 1. 
Procedure   
The procedure for Experiment 2 was identical to that used in Experiment 1 with the 
exception that participants dictated unique text messages at each of the 6 task locations 
throughout the driving course.  In order to adequately train participants on the text 
message functionality of each of the phones, they were required to send 6 practice text 
messages prior to using the phone’s digital assistant that was to be used in the forthcoming 
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condition. Voice training and resetting for each of the phones was identical to that used in 
Experiment 1. 
 
Once trained, participants were reminded of the upcoming task and asked if they had any 
questions.  Text messaging prompts were given in the same location as the task prompts in 
Experiment 1 and were: 

1. “Tell Amy Smith that you saw her flight is early, but you’re on your way now.” 
2. “Tell John Doe you’re running late in traffic, & ask him to start the meeting without 

you.” 
3. “Tell Anna Pearl your car is in the shop, & can she come pick you up.” 
4. “Ask Chris Hunter if he wants to eat out & what movie he wants to watch tonight.” 
5. “Tell Amy Smith you’re running late. Ask her to start dinner.” 
6. “Tell John Doe you picked up lunch & you’re on your way to the meeting.” 

In all cases, every effort was made to keep the experimental procedure between Experiment 
1 and Experiment 2 as identical as possible. 
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Results 
 
Experiment 1 
 
DRT 
 
The DRT data reflect the response to the onset of the red light in the peripheral detection 
task.  The RT and Hit Rate data for the DRT task are plotted as a function of secondary-
task condition in Figures 1 and 2, respectively.  RT was measured to the nearest 
millisecond (msec) and the Hit Rate was calculated from data where a response to the red 
light was coded as a “hit,” non-responses to a red light were coded as a “miss.”  Data are 
broken down by active involvement in the secondary-task (e.g., on-task) denoted by a suffix 
of “-1,” or when participants were operating the vehicle without concurrent secondary 
interaction (e.g., off-task), denoted by a suffix of “-0.” 
 
Reaction Time 
 
The reaction time data from the DRT when participants were on-task were analyzed using 
a MANOVA with a 3 (Age Group: ages 21-34, ages 35-53, and ages 54-70) by 8 (Condition: 
Single-task, Apple-0, Google-0, Microsoft-0, Apple-1, Google-1, Microsoft-1, and OSPAN) 
split-plot factorial design.  RT increased with Condition, F(7, 196) = 29.83, p < .001, η2 = 
.516, but neither Age, F(2, 28) = 1.76, p = .190, η2 = .112, nor the Age by Condition 
interaction, F(14, 196) = 1.08, p = .375, η2 =  .072, were significant.  Planned comparisons 
indicated that the single-task condition was significantly faster than the other secondary-
task conditions (p < .001), that the Google-0 condition was faster than both the Apple-0 
condition (p = .023) and Micorsoft-0 condition (p.021), that the Apple-0 and Microsoft-0 
conditions did not significantly differ (p = .630), and that each of these conditions differed 
from their respective on-task performance (Apple-0 vs. Apple-1, p < .001; Google-0 vs. 
Google-1, p < .001; Microsoft-0 vs. Microsoft-1, p < .001).  Importantly, neither the Apple-1, 
nor the Microsoft-1 conditions significantly differed from the OSPAN condition (p = .061 
and p = .130), whereas the Google-1 condition was significantly faster than OSPAN (p = 
.003). Finally, the on-task performance for the three conditions did not differ from each 
other, (Apple-1 vs. Google-1, p = .527; Apple-1 vs. Microsoft-1, p = .426; Google-1 vs. 
Microsoft-1, p = .153). 
 
Hit Rate 
 
The Hit Rate data from the DRT task were analyzed using a MANOVA with a 3 (Age 
Group: ages 21-34, ages 35-53, and ages 54-70) by 8 (Condition: Single-task, Apple-0, 
Google-0, Microsoft-0, Apple-1, Google-1, Microsoft-1, and OSPAN) split-plot factorial 
design.  Hit Rate decreased with Condition, F(7, 196) = 11.30, p < .001, η2 = .287, but 
neither Age, F(2, 28) = 0.11 p = .895, η2 = .008, nor the Age by Condition interaction, F(14, 
196) = 1.27, p = .227, η2 = .083, were significant.  Planned comparisons indicated that Hit 
Rate was significantly higher in the single-task condition than the other secondary-task 
conditions (p < .001) with the exception of the single-task vs. Google-0 comparison, which 
did not significantly differ (p = .599). Hit Rate was higher in the Google-0 condition than 
the Apple-0 (p = .006) and Micorsoft-0 (p.017) conditions, and the Apple-0 and Microsoft-0 
conditions did not significantly differ (p = .815).  The off-task performance differed from on-
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task performance for Google-0 vs. Google-1, p < .006, and Microsoft-0 vs. Microsoft-1, p < 
.013, but not for Apple-0 vs. Apple-1 (p = .057).  Hit Rate was higher for each of the on-task 
secondary-task conditions than OSPAN (p = .032, p = .002, and p = .021 for Apple-1, Google-
1, and Microsoft-1, respectively).  Finally, the on-task performance for the three secondary-
task conditions did not differ from each other (Apple-1 vs. Google-1, p = .051; Apple-1 vs. 
Microsoft-1, p = .851; Google-1 vs. Microsoft-1, p = .058). 
 
NASA TLX  
 
The 6 scales of the NASA TLX, presented in Figure 3, were analyzed using a MANOVA 
with a 3 (Age Group: ages 21-34, ages 35-53, and ages 54-70) by 5 (Condition: Single-task, 
Apple, Google, Microsoft and OSPAN) split-plot factorial design.  The MANOVA revealed a 
main effect of Condition, F(24, 440) = 5.56, p < .001, η2 = 233, but neither Age, F(12,48) = 
0.82, p = ..627, η2 = .171, nor the interaction were significant, F(48, 672) = 0.84, p = .767, η2 
= .057.  
 
Univariate tests were also performed on the 6 NASA TLX subscales.  The mental sub-scale 
increased as a function of Condition, F(4, 112) = 50.58, p < .001, η2 = .644, and Age, F(2, 28) 
= 4.11, p = .027, η2 = .227, but the interaction was not significant, F(8, 112) = 0.65, p = .734, 
η2 = .044.  The physical sub-scale increased as a function of Condition, F(4, 112) = 9.80, p < 
.001, η2 = .259, but neither the Age, F(2, 28) = 0.33, p = .719, η2 = .023, nor the interaction 
were significant, F(8, 112) = 0.67, p = .713, η2 = .046.  The temporal sub-scale increased as a 
function of Condition, F(4, 112) = 33.99, p < .001, η2 = .548, but neither the Age, F(2, 28) = 
2.36, p = .113, η2 = .114, nor the interaction were significant, F(8, 112) = 0.63, p = .747, η2 = 
.043.  The performance sub-scale increased as a function of Condition, F(4, 112) = 5.55, p < 
.001, η2 = .165, but neither the Age, F(2, 28) = 0.43, p = .657, η2 = .030, nor the interaction 
were significant, F(8, 112) = 0.81, p = .598, η2 = .054.  The effort sub-scale increased as a 
function of Condition, F(4, 112) = 29.79, p < .001, η2 = .516, but neither the Age, F(2, 28) = 
2.06, p = .146, η2 = .129, nor the interaction were significant, F(8, 112) = 0.81, p = .597, η2 = 
.055.  Finally, the frustration sub-scale increased as a function of Condition, F(4, 112) = 
21.02, p < .001, η2 = .429 but neither the Age, F(2, 28) = 1.31, p = .285, η2 = .014, nor the 
interaction were significant, F(8, 112) = 0.45, p = .889, η2 = .031. 
Intuitiveness and Complexity 
Participants were also asked to rate how intuitive, usable, and easy it was to use the 
different smartphones.  They also rated how complex, difficult, and confusing it was to use 
the different smartphones.  Figure 4 presents the intuitiveness and complexity ratings on a 
21-point scale where 1 reflected “not at all” and 21 reflected “very much.” 
Intuitiveness 
A 3 (Age Group: ages 21-34, ages 35-53, and ages 54-70) by 3 (Condition: Apple, Google, 
Microsoft) split-plot MANOVA found that intuitiveness varied as a function of Condition, 
F(2, 56) = 5.66, p = .006, η2 = .168, but not Age, F(2, 28) = 1.64, p = .212, η2 = .105; however, 
the Age by Condition was significant, F(4, 56) = 2.98, p = .026, η2 = .176.  Planned 
comparisons revealed that the intuitiveness of the Apple and Google systems did not differ 
(p = .244), and both were rated as more intuitive than the Microsoft system (Apple vs. 
Microsoft, p = .009; Google vs. Microsoft, p = .036). 
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Complexity 
 
 A 3 (Age Group: ages 21-34, ages 35-53, and ages 54-70) by 3 (Condition: Apple, Google, 
Microsoft) split-plot MANOVA found that complexity varied as a function of Condition, F(2, 
56) = 9.83, p = .006, η2 = .168, but neither the Age, F(2, 28) = 1.06, p = .360, η2 = .070, nor 
the Age by Condition interaction were significant, F(4, 56) = 0.61, p = .660, η2 = .042.  
Planned comparisons revealed that the complexity of the Apple and Google systems did not 
differ (p = .772), and both were rated as less complex than the Microsoft system (Apple vs. 
Microsoft, p = .002; Google vs. Microsoft, p = .001). 
 
Video Analysis of Interactions 
An analysis of the video of the participant’s interactions was performed to determine the 
vehicle speed, presented in Figure 5, the number of observed errors, presented in Figure 6 
and the time to complete the task, presented in Figure 7.  The relative frequency of the four 
error categories for each of the smartphones is provided in Figure 8. 
 
Vehicle Speed 
 
 A 3 (Age Group: ages 21-34, ages 35-53, and ages 54-70) by 3 (Condition: Apple, Google, 
Microsoft) split-plot MANOVA found that vehicle speed varied as a function of Condition, 
F(4, 112) = 4.87, p < .001, η2 = .148, but not Age, F(2, 28) = 1.43, p = .256, η2 = .093.  The 
Age by Condition interaction was also significant, F(8, 112) = 2.89 p = .006, η2 = .171.  
Planned comparisons revealed that the driving speed was higher in the single-task 
condition than in all other conditions (p = .006, p < .001, p < .001, and p = .013, respectively) 
and that speed did not differ from OSPAN for the Apple (p = .222), and Google (p = .508) 
conditions, but the Microsoft condition was significantly faster than OSPAN (p = .041).  
Vehicle speed did not significantly differ between the smartphone conditions (Apple vs. 
Google; p = .737; Apple vs. Microsoft, p = .379; and Google vs. Microsoft, p = .508). 
 
Error Count 
 
A 3 (Age Group: ages 21-34, ages 35-53, and ages 54-70) by 3 (Condition: Apple, Google, 
Microsoft) split-plot MANOVA found that the number of errors differed as a function of 
Condition, F(2, 56) = 3.94, p = .025, η2 = .123, Age, F(2, 28) = 4.56, p = .020, η2 = .245, but 
the Age by Condition interaction was not significant, F(4, 56) = 0.84 p = .504, η2 = .057.  
Planned comparisons revealed that the number of errors did not differ between the Apple 
and Google (p = .508) or Apple and Microsoft (p = .101), but the difference between the 
Google and Microsoft was significant (p = .041). 
 
Task Completion Time 
 
A 3 (Age Group: ages 21-34, ages 35-53, and ages 54-70) by 3 (Condition: Apple, Google, 
Microsoft) split-plot MANOVA found that the time to complete the task did not differ as a 
function of Condition, F(2, 56) = 1.80, p = .174, η2 = .060, Age, F(2, 28) = 1.46, p = .249, η2 = 
.095, and the Age by Condition interaction was also not significant, F(4, 56) = 1.69 p = .166, 
η2 = .108.  None of the pair-wise planned comparisons was significant (Apple vs. Google, p = 
.508; or Apple vs. Microsoft, p = .101; and Google vs. Microsoft, p = .576). 
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Figure 1.  Mean DRT reaction time (in msec) for the single-task, OSPAN, and off-task (e.g., 
Google-0) and on-task (e.g., Google-1) performance for the Apple, Google, and Microsoft 
secondary tasks in Experiment 1.  Error bars reflect 95% confidence intervals around the 
point estimate. 
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Figure 2.  Mean DRT Hit Rate (an accuracy measure computed by determining the 
number of valid responses divided by the total number of responses for the single-task, 
OSPAN, and off-task (e.g., Google-0) and on-task (e.g., Google-1) performance for the Apple, 
Google, and Microsoft secondary tasks in Experiment 1.  Error bars reflect 95% confidence 
intervals around the point estimate. 
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Figure 3.  Mean NASA TLX ratings for the six sub-scales in the 5 conditions of Experiment 
1.  Error bars reflect 95% confidence intervals around the point estimate. 
  

 
 

16



 Intuitiveness Complexitity
0

3

6

9

12

15

18

21
Pa

rti
ci

pa
nt

's 
R

at
in

g
Apple

Google

Microsoft

Experiment 1

Figure 4.  Mean ratings of intuitiveness and complexity for the Apple, Google, and 
Microsoft systems in Experiment 1.  Error bars reflect 95% confidence intervals around the 
point estimate. 
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Figure 5.  Average driving speed (in MPH) for the 5 conditions in Experiment 1.  Error 
bars reflect 95% confidence intervals around the point estimate. 
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Figure 6.  Average number of errors experienced by participants for the Apple, Google, and 
Microsoft systems in Experiments 1 and 2.  Error bars reflect 95% confidence intervals 
around the point estimate. 
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Figure 7.  Average time to complete the secondary tasks for the Apple, Google, and 
Microsoft systems in Experiments 1 and 2.  Error bars reflect 95% confidence intervals 
around the point estimate. 
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Figure 8.  Relative proportion of errors by category for the Apple, Google, and Microsoft 
systems in Experiment 1. 
 
 
Experiment 2 
 
DRT   
 
The RT and Hit Rate data for the DRT task are plotted as a function of secondary-task 
condition in Figures 9 and 10, respectively.  Like Experiment 1, these are denoted by a “-0” 
for off task performance (e.g., not interacting with the digital voice assistant) and a “-1” for 
on-task performance (e.g., interacting with the digital voice assistant). 
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Reaction Time 
 
The reaction time data from the DRT task were analyzed using a MANOVA with a 3 (Age 
Group: ages 21-34, ages 35-53, and ages 54-70) by 8 (Condition: Single-task, Apple-0, 
Google-0, Microsoft-0, Apple-1, Google-1, Microsoft-1, and OSPAN) split-plot factorial 
design.  RT increased with Condition, F(7, 217) = 38.87, p < .001, η2 = .556, and Age, F(2, 
31) = 5.00, p = .013, η2 = .244, but the Age by Condition interaction was not significant, 
F(14, 217) = 1.01, p = .447, η2 = .061.  Planned comparisons indicated that the single-task 
condition was significantly faster than the other secondary-task conditions (p < .001) and 
that the off-task secondary-tasks did not differ from each other (Apple-0 vs. Google-0, p = 
.070; Apple-0 vs. Microsoft-0, p = .392; Google-0 vs. Microsoft-0, p = .189).  Each of these off-
task conditions differed from their respective on-task performance (Apple-0 vs. Apple-1, p < 
.001; Google-0 vs. Google-1, p < .001; Microsoft-0 vs. Microsoft-1, p < .001).  Importantly, 
none of the on-task secondary tasks differed significantly from the OSPAN condition (p = 
.805, p = .297, and p = .569 for Apple-1, Google-1, and Microsoft-1, respectively).  Finally, 
the on-task performance for the three conditions did not differ from each other, (Apple-1 vs. 
Google-1, p = .365; Apple-1 vs. Microsoft-1, p = .411; Google-1 vs. Microsoft-1, p = .612). 
 
Hit Rate 
 
The Hit Rate data from the DRT task were analyzed using a MANOVA with a 3 (Age 
Group: ages 21-34, ages 35-53, and ages 54-70) by 8 (Condition: Single-task, Apple-0, 
Google-0, Microsoft-0, Apple-1, Google-1, Microsoft-1, and OSPAN) split-plot factorial 
design.  Hit Rate decreased with Condition, F(7, 217) = 9.33, p < .001, η2 = .231, and Age, 
F(2, 31) = 4.00 p = .029, η2 = .205, and the Age by Condition interaction was also significant, 
F(14, 217) = 1.81, p = .039, η2 = .104.  Planned comparisons indicated that Hit Rate was 
significantly higher in the single-task condition than the other secondary-task conditions (p 
< .001) and that the off-task secondary-task conditions did not differ from each other 
(Apple-0 vs. Google-0, p = .055; Apple-0 vs. Microsoft-0, p = .913; Google-0 vs. Microsoft-0, p 
= .052).  The off-task performance differed from on-task performance for Google-0 vs. 
Google-1, p = .050, and Microsoft-0 vs. Microsoft-1, p = .002, but not for Apple-0 vs. Apple-1 
(p = .100).  Importantly, none of the on-task secondary task conditions differed significantly 
from the OSPAN condition (p = .821, p = .595, and p = .817 for Apple-1, Google-1, and 
Microsoft-1, respectively).  Finally, the on-task performance for the three conditions did not 
differ from each other, (Apple-1 vs. Google-1, p = .741; Apple-1 vs. Microsoft-1, p = .946; 
Google-1 vs. Microsoft-1, p = .635). 
 
NASA TLX  
 
The 6 scales of the NASA TLX, presented in Figure 11, were analyzed using a MANOVA 
with a 3 (Age Group: ages 21-34, ages 35-53, and ages 54-70) by 5 (Condition: Single-task, 
Apple, Google, Microsoft and OSPAN) split-plot factorial design.  The MANOVA revealed a 
main effect of Condition, F(24,488) = 6.40, p < .001, η2 = .239, but neither the Age, F(12,54) 
= 1.15, p = .342, η2 = .204, nor the interaction were significant, F(48,744) = 1.31, p = .076, η2 
= .078.  
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Univariate tests were also performed on the 6 NASA TLX subscales.  The mental sub-scale 
increased as a function of Condition, F(4, 124) = 76.43, p < .001, η2 = .771, Age, F(2, 31) = 
3.59, p = .039, η2 = .188, and these two factors interacted, F(8, 124) = 2.19, p = .032, η2 = 
.124.  The physical sub-scale increased as a function of Condition, F(4, 124) = 18.65, p < 
.001, η2 = .376, but neither the Age, F(2, 31) = 2.74, p = .080, η2 = .150, nor the interaction 
were significant, F(8, 124) = 1.32, p = .241, η2 = .078.  The temporal sub-scale increased as a 
function of Condition, F(4, 124) = 33.09, p < .001, η2 = .516, but neither the Age, F(2, 31) = 
2.73, p = .081, η2 = .150, nor the interaction were significant, F(8, 124) = 1.98, p = .054, η2 = 
.113.  The performance sub-scale increased as a function of Condition, F(4, 124) = 24.16, p < 
.001, η2 = .438, but neither the Age, F(2, 31) = 0.72, p = .495, η2 = .044, nor the interaction 
were significant, F(8, 124) = 1.07, p = .391, η2 = .064.  The effort sub-scale increased as a 
function of Condition, F(4, 124) = 59.64, p < .001, η2 = .658, but neither the Age, F(2, 31) = 
2.30, p = .117, η2 = .129, nor the interaction were significant, F(8, 124) = 1.40, p = .203, η2 = 
.083.  Finally, the frustration sub-scale increased as a function of Condition, F(4, 124) = 
21.40, p < .001, η2 = .408 but neither the Age, F(2, 31) = 0.22, p = .806, η2 = .014, nor the 
interaction were significant, F(8, 124) = 1.01, p = .432, η2 = .061. 
Intuitiveness and Complexity 
 Participants were also asked to rate how intuitive, usable, and easy it was to use the 
different smartphones.  They also rated how complex, difficult, and confusing it was to use 
the different smartphones.  Figure 12 presents the intuitiveness and complexity ratings on 
a 21-point scale where 1 reflected “not at all” and 21 reflected “very much.” 
Intuitiveness  
A 3 (Age Group: ages 21-34, ages 35-53, and ages 54-70) by 3 (Condition: Apple, Google, 
Microsoft) split-plot MANOVA found that intuitiveness varied as a function of Condition, 
F(2, 62) = 18.25, p < .001, η2 = .371 but neither Age, F(2, 31) = 0.55, p = .581, η2 = .034, nor 
the Age by Condition were significant, F(4, 62) = 0.87, p = .486, η2 = .053.  Planned 
comparisons revealed that the intuitiveness of the Apple and Google systems did not differ 
(p = .278), and both were rated as more intuitive than the Microsoft system (Apple vs. 
Microsoft, p < .001; Google vs. Microsoft, p < .031).  
 
Complexity 
 
 A 3 (Age Group: ages 21-34, ages 35-53, and ages 54-70) by 3 (Condition: Apple, Google, 
Microsoft) split-plot MANOVA found that complexity varied as a function of Condition, F(2, 
62) = 9.00, p < .001, η2 = .225 but neither the Age, F(2, 31) = 1.10, p = .364, η2 = .066, nor 
the Age by Condition interaction were significant, F(4, 62) = 0.22, p = .928, η2 = .014.  
Planned comparisons revealed that the complexity of the Apple and Google systems did not 
differ (p = .949), and both were rated as less complex than the Microsoft system (Apple vs. 
Microsoft, p = .003; Google vs. Microsoft, p < .001). 
 
Video Analysis of Interactions  
An analysis of the video of the participant’s interactions was performed to determine the 
vehicle speed, presented in Figure 5, the number of observed errors, presented Figure 6 and 
the time to complete the task, presented in Figure 7.  The relative frequency of the four 
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error categories for each of the smartphones is provided in Figure 13.  
 
 
Vehicle Speed 
 
A 3 (Age Group: ages 21-34, ages 35-53, and ages 54-70) by 3 (Condition: Apple, Google, 
Microsoft) split-plot MANOVA found that vehicle speed varied as a function of Condition, 
F(4, 124) = 4.93, p < .001, η2 = .137, but neither Age, F(2, 31) = 0.31, p = .736, η2 = .020 nor 
the Age by Condition interaction were significant, F(8, 124) = 1.73 p = .098, η2 = .100.  
Planned comparisons revealed that the driving speed was higher in the single-task 
condition than in all other conditions (p < .001, p = .012, p = .035, and p < .001, respectively) 
and that speed did not differ from OSPAN for the Apple (p = .963), Google (p = .162), or 
Microsoft (p = .420) conditions  Vehicle speed also did not significantly differ between the 
smartphone conditions (Apple vs. Google; p = .179; Apple vs. Microsoft, p = .619; and Google 
vs. Microsoft, p = .480). 
 
Error Count  
 
A 3 (Age Group: ages 21-34, ages 35-53, and ages 54-70) by 3 (Condition: Apple, Google, 
Microsoft) split-plot MANOVA found that the number of errors differed as a function of 
Condition, F(2, 62) = 13.95, p < .001, η2 = .310, but neither the Age, F(2, 31) = 0.88, p = .916, 
η2 = .006, nor the Age by Condition interaction were not significant, F(4, 62) = 0.35 p = .840, 
η2 = .022.  Planned comparisons revealed that the number of errors did not differ between 
the Apple and Google (p = .177), but the differences between Apple and Microsoft (p < .001) 
and the Google and Microsoft were significant (p < .001). 
 
Task Completion Time 
 
A 3 (Age Group: ages 21-34, ages 35-53, and ages 54-70) by 3 (Condition: Apple, Google, 
Microsoft) split-plot MANOVA found that the time to complete the task differed as a 
function of Condition, F(2, 62) = 30.98, p < .001, η2 = .500, but neither the Age, F(2, 31) = 
0.95, p = .397, η2 = .058, nor the Age by Condition interaction were significant, F(4, 62) = 
0.28 p = .891, η2 = .018.  All of the pair-wise planned comparisons were significant (Apple 
vs. Google, p < .001; or Apple vs. Microsoft, p < .001; and Google vs. Microsoft, p < .001). 
 
A Comparison across Experiments 
A number of analyses were performed to determine if the pattern obtained in the two 
experiments differed in any substantive way.  For the analysis of the DRT data, a 2 
(Experiment) by 3 (Age Group: ages 21-34, ages 35-53, and ages 54-70) by 8 (Condition: 
Single-task, Apple-0, Google-0, Microsoft-0, Apple-1, Google-1, Microsoft-1, and OSPAN) 
split-plot MANOVA was conducted to determine if the pattern differed across experiments.  
For RT, neither the main effect of Experiment, F(1, 59) = 0.07, p = .792, η2 = .001, nor the 
Experiment by Age interaction, F(2, 59) = 1.23, p = .301, η2 = .040, nor the Experiment by 
Condition interaction, F(7, 413) = 1.74, p = .098, η2 = .029, nor the Experiment by Age by 
Condition interaction, F(14, 413) =.728, p = .746, η2 = .024 were significant.  For Hit Rate, 
neither the main effect of Experiment, F(1,59) = 0.75, p = .390, η2 = .013, nor the 
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Experiment by Age interaction, F(2, 59) = 2.86, p = .066, η2 = .088, nor the Experiment by 
Condition interaction, F(7, 413) = 1.71, p = .104, η2 = .028, nor the Experiment by Age by 
Condition interaction, F(14, 413) 1.65, p = .065, η2 = .053 were significant. Like the course-
grained analysis reported above, the overall pattern obtained in the fine-grained analysis of 
the two experiments was virtually identical. 
 
A MANOVA compared the six NASA TLX measures using a 2 (Experiment) by 3 (Age 
Group: ages 21-34, ages 35-53, and ages 54-70) by 5 (Condition: Single-task, Apple, Google, 
Microsoft and OSPAN) split-plot factorial design.  The MANOVA revealed that neither the 
main effect of Experiment, F(6, 54) = 2.16, p = .062, η2 = .193, nor the Experiment by Age 
interaction, F(12, 110) = 1.67, p = .083, η2 = .154, nor the Experiment by Age by Condition 
interaction, F(48,1416) 1.09, p = .315, η2 = .036 were significant.  However, the Experiment 
by Condition interaction was significant, F(24,936) = 2.39, p < .001, η2 = .058.  On the 
whole, the pattern obtained in the two experiments was virtually identical. 
Residual Costs 
 
A surprising finding was that the off-task performance in the DRT task differed 
significantly from single-task performance.  Given that drivers were not engaged in any 
secondary-task activities during the off-task portions of the drive, it suggests that there are 
residual costs that persist after the smartphone interaction had terminated.  To evaluate 
this residual cost in more detail, DRT performance in the off-task segments of the drive 
were sorted into 3-second bins relative to the time that the off-task interval began.  For 
example, a DRT event occurring 5 seconds after the end of a smartphone interaction would 
be sorted into the second bin (which reflects the average of events between 3 and 6 
seconds).  Figure 14 presents the switch cost function collapsed over the two experiments 
and the different smartphone conditions within each experiment, as they did not produce 
different patterns in the data.  In the figure, “O” refers to performance in the OSPAN task 
and “S” refers to single-task performance.  The filled circles reflect the average RT as a 
function of sorting bin and the solid blue line reflects the best-fitting power function 
describing the relationship between RT and bin: 

f(x) = a * (x-.1837641), where a = exp(6.697153), with R2= .97. 
 
The residual switch costs show that it takes a surprisingly long time to dissipate.  In fact, 
the data indicate that off-task performance (cf. Figures 1, 2, 9, and 10) reflects a mixture of 
“single-task” performance and the lingering costs associated with the voice-based 
interactions in the preceding on-task period.  This is notable effect given the actual time to 
complete the tasks, approximately 30 seconds, (cf. Figure 7) was just over twice as long as 
the time it took for the residual costs to subside.  While residual switch costs of much 
smaller magnitude have been observed in standard cognitive experiments (e.g., Rogers & 
Monsell, 1995), they often involve switching between two active tasks (Task A and Task B).  
The switch costs depicted in Figure 14 are notable because of their magnitude, their 
duration, and the fact that they are obtained even when there is no active switch to Task B.  
They appear to reflect the lingering act of disengaging from the cognitive processing 
associated with the smartphone task. From a practical perspective, the data indicate than 
just because a driver terminates a call or text message doesn’t mean that they are no longer 
impaired. 
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The Cognitive Distraction Scale 
 

The primary objective of the current research was to compare the cognitive workload 
associated with using 3 different intelligent personal assistants to complete common voice 
tasks while driving (e.g., voice dialing, music selection, etc.).  Because the different 
dependent measures collected in this research were recorded on different scales, each was 
transformed to a standardized score.  This involved Z-transforming each of the dependent 
measures to have a mean of 0 and a standard deviation of 1 (across the experiments and 
conditions) and the average for each condition was then obtained.  The standardized scores 
for each condition were then summed across the different dependent measures to provide 
an aggregate measure of cognitive distraction.  Finally, the aggregated standardized scores 
were scaled such that the non-distracted single-task driving condition anchored the low-end 
(Category 1) and the OSPAN task anchored the high-end (Category 5) of the cognitive 
distraction scale.  For each of the other tasks, the relative position compared to the low and 
high anchors provided an index of the cognitive workload for that activity when 
concurrently performed while operating a motor vehicle. The four-step protocol for 
developing the cognitive distraction scale is listed below. 
 

Step 1: For each dependent measure, the standardized scores across 
experiments, conditions, and subjects were computed using Zi = (xi - X) / SD, 
where X refers to the overall mean and SD refers to the pooled standard 
deviation. 
 
Step 2: For each dependent measure, the standardized condition averages 
were computed by collapsing across experiments and subjects. 
 
Step 3: The standardized condition averages across dependent measures were 
computed with an equal weighting for primary, secondary, and subjective 
metrics. The measures within each metric were also equally weighted.  For 
example, the secondary task workload metric was comprised of an equal 
weighting of the measures DRT-RT and DRT-Hit Rate. 
 
Step 4: The standardized mean differences were range-corrected so that the 
non-distracted single-task condition had a rating of 1.0 and the OSPAN task 
had a rating of 5.0 
 

Xi = (((Xi - min) / (max - min)) * 4.0) + 1 
 

The cognitive workload scale for the different conditions is presented in Figure 15.  By 
definition, the single-task condition had a rating of 1.0 and the OSPAN condition had a 
rating of 5.0.  The rating for Apple was 3.7, for Google was 3.3, and for Microsoft was 4.1.3  
The error bars represent 95% confidence intervals and document that the Google system 
                                            
3 If the workload ratings were based solely upon Experiment 1, they would be 3.4 for Apple Siri, 3.0 
for Google Now and 3.8 for Microsoft Cortana.  
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was associated with a lower workload rating that the Apple and Microsoft systems, which 
did not significantly differ. 
 
Figure 16 helps to put these workload ratings into perspective.  Our prior research (Strayer 
et al., 2013) found that listening to the radio (1.2) or an audio book (1.7) were associated 
with a small increase in cognitive distraction, the conversation activities of conversing with 
a friend on a hand-held (2.4) or hands-free cell phone (2.3) were associated with a moderate 
increase in cognitive distraction, and interacting with a highly reliable speech-to-text 
condition (3.1) had a large cognitive distraction rating.  Cooper et al., (2014) also used the 
cognitive workload scale to benchmark six 2013 voice-based systems.  The ratings were 
Toyota (1.7), Hyundai (2.2), Chrysler (2.7), Ford (3.0), Mercedes (3.1) and Chevy (3.7).   
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Figure 9.  Mean DRT reaction time (in msec) for the single-task, OSPAN, and off-task (e.g., 
Google-0) and on-task (e.g., Google-1) performance for the Apple, Google, and Microsoft 
secondary tasks in Experiment 2.  Error bars reflect 95% confidence intervals around the 
point estimate. 
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Figure 10.  Mean DRT Hit Rate (an accuracy measure computed by determining the 
number of valid responses divided by the total number of responses) for the single-task, 
OSPAN, and off-task (e.g., Google-0) and on-task (e.g., Google-1) performance for the Apple, 
Google, and Microsoft secondary tasks in Experiment 2.  Error bars reflect 95% confidence 
intervals around the point estimate. 
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Figure 11.  Mean NASA TLX ratings for the six sub-scales in the 5 conditions of 
Experiment 2.  Error bars reflect 95% confidence intervals around the point estimate. 
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Figure 12.  Mean ratings of intuitiveness and complexity for the Apple, Google, and 
Microsoft systems in Experiment 2.  Error bars reflect 95% confidence intervals around the 
point estimate. 
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Figure 13.  Relative proportion of errors by category for the Apple, Google, and Microsoft 
systems in Experiment 2. 
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Figure 14.  Residual switch costs in transitioning from on-task to off-task performance. 
The red “O” indicates average OSPAN RT from the DRT task; the red “S” indicates the 
average single-task RT from the DRT task.  Off-task performance is distributed into 3-
second intervals (relative to when the on-task activity terminated).  The blue line 
represents the best fitting power function relating transition from on-task to single-task 
levels of performance.  The solid red line represents the critical t-value for significant 
differences from the single-task condition.  From the figure, residual switch costs are 
significantly different from the single-task baseline up to 18 seconds after the on-task 
interval had terminated. 
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Figure 15. The cognitive workload scale for the Apple, Google, and Microsoft systems 
compared to single-task (category 1) and OSPAN (category 5).  Error bars reflect 95% 
confidence intervals around the point estimate. 
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Figure 16. The workload scale for Strayer et al., (2013, the black bars), Cooper et al., 
(2014, the red bars), and the current research (blue bars). 
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Discussion 
 
Experiment 1 

Experiment 1 examined the impact of intelligent personal assistant interactions using 
three different smartphone systems (Apple’s Siri, Google’s Google Now for Android phones, 
and Microsoft’s Cortana).  Each of the smartphone conditions impaired performance when 
compared to the single-task baseline.  There were also systematic differences between the 
smartphone systems, such that interactions using the Google system had lower levels of 
workload than the Apple and Microsoft systems.  Our analysis revealed that these 
differences were associated with the number of system errors and the complexity and 
intuitiveness of the systems.  Surprisingly large delays in RT were observed in the DRT 
data when drivers were interacting with the devices – in each case, on-task DRT 
performance was similar to that of the demanding OSPAN task. Importantly, the analysis 
of DRT performance found that off-task performance was impaired relative to the single-
task baseline.  This pattern suggests that there are residual costs associated using each of 
the devices that take a significant time to dissipate.   
 
General Discussion 

The objective of the current research was to examine the impact of voice-based interactions 
using three different smartphone systems (Apple’s Siri, Google’s Google Now, and 
Microsoft’s Cortana) on the workload experienced by the driver.  We selected tasks (voice 
dialing, contact calling, music selection, and voice-texting) that could be performed with no 
visual component, and only a minimal button press to initiate the interaction.  As such, the 
interactions were primarily cognitive in nature (i.e., aside from the initial button push on 
the remote headphone there was no requirement for visual or manual interaction with the 
device).  The experiments were structured such that the car, driving environment, wireless 
provider (T-Mobile with 4-5 bars of service), and headphone (with ear-bud, microphone, and 
remote button) were identical and the order in which the conditions were performed was 
counterbalanced across participants.  Moreover, before each test began, participants 
practiced with each system to ensure that they were familiar with the device and its 
functions.  Note that in some cases this also involved resetting the smartphone so that it 
could learn the user’s voice patterns.  Thus, the only difference between the conditions was 
the smartphone functionality provided by the Apple, Google, and Microsoft systems. 
 
In both studies, the cognitive workload when using the smartphones was significantly 
higher than that of the single-task baseline. There were also systematic differences between 
the smartphone systems, such that interactions using the Google system had significantly 
lower levels of workload than the Apple and Microsoft systems.  Video analysis revealed 
that these differences were associated with the number of system errors, the time to 
complete an action, and the complexity and intuitiveness of the systems.  Finally, high 
levels of workload were observed in the analysis of the DRT data when drivers were 
interacting with the devices – on-task DRT performance did not significantly differ from 
that of the demanding OSPAN task.  
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Takeaways from the current research 

 
There are four key takeaways from the current research.  First, using the voice-based 
intelligent personal assistants to complete common in-vehicle tasks such as: calling a 
contact, dialing a phone number, selecting music, or sending a text messages was 
associated with a significant increase in the workload of the driver, compared to single-task 
driving conditions.  In our testing, the overall workload ratings associated with using the 
smartphone ranged from 3.3 to 4.1, reflecting a moderate to high level of cognitive 
workload.  Moreover, the workload of the driver was virtually identical for placing calls, 
selecting music and the seemingly more demanding activity of sending of text messages.  
These levels of workload are similar those reported by Cooper et al., (2014) in their 
evaluation of voice-based interactions in 2013 vehicles. 
 
Second, there were significant differences in the cognitive workload experienced by the 
driver when they used the different smartphones to perform the same tasks in the same 
driving conditions.  Notably, the Google system outperformed the Apple and Microsoft 
systems.  Our analysis found that this was directly related to the number of system errors 
and the intuitiveness/complexity of the different systems.  It is noteworthy that this same 
factor differentiated the levels of workload in the evaluation by Cooper et al. (2014).  
Indeed, a general principle to emerge from the research is that robust, error-free systems 
tend to have lower workload than rigid error-prone ones.  Thus, enhanced usability testing 
and an iterative design process to minimize system errors in the user interface have the 
potential to make these systems less cognitively demanding on the driver. 
 
Third, the analysis of workload using the on/off task DRT data found that “on-task” 
performance was associated with surprisingly high levels of workload.  In fact, in many 
instances the on-task levels of workload experienced by the driver did not differ from the 
mentally demanding OSPAN task (a category-5 level of workload).  This high level of 
workload should serve as a caution that these “hands-free” voice-based interactions can be 
very mentally demanding and ought not to be used indiscriminately while operating a 
motor vehicle.  Compared to our earlier research (Strayer et al., 2013), these voice-based 
smartphone interactions would appear to be significantly more demanding than typical cell 
phone conversations, which had cognitive workload levels around 2.3. It is possible that the 
timing and wording demands associated with the smartphone interactions may be a source 
of the increased level of cognitive workload. 
 
Fourth, the off-task DRT data provided evidence of persistence interference following voice-
based interactions on the smartphones.  Despite the fact that the participants were not 
interacting with the smartphone in any way, there were residual costs associated with the 
prior interaction that were evident in both experiments and for all three smartphones.  
These residual switch costs are notable for their magnitude (in the seconds immediately 
following an interaction, the impairments are similar to that observed with OSPAN).  These 
costs are also notable for their duration, lasting up to 18 seconds after an interaction had 
been completed.  These findings have implications for self-regulatory strategies, such as 
choosing to dial or send a text at a stoplight, because the costs of these interactions are 
likely to persist when the light turns green.  The residual switch costs may be related to the 
driver reestablishing situation awareness of the driving environment that was lost during 
the smartphone interaction (Fisher & Strayer, 2014; Strayer, in press). 
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Conclusion 
 

The goal of the current research was to examine the impact of voice-based interactions 
using three different smartphone systems (Apple’s Siri, Google’s Google Now for Android 
phones, and Microsoft’s Cortana) on the cognitive workload of the driver.  We found 
systematic differences between the systems and video analysis revealed that the differences 
were associated with the number of system errors, the time to complete an action, and the 
complexity and intuitiveness of the devices.  The data suggest caution in introducing voice-
based interactions in the vehicle because of the surprisingly high levels of workload 
associated with some of these interactions.  
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