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Foreword 

Vehicle technology is progressing to a point where the role and responsibility of drivers is 

beginning to evolve. Advanced driver assistance systems and other automation can control 

many of the driving tasks, including vehicle speed, headway, and lane position, and the 

capabilities of such systems continue to grow. In light of these changes, drivers need to 

understand new vehicle technology in order to ensure safe and appropriate use. Drivers’ so-

called mental models of vehicle technology have become an important topic among 

researchers and other industry stakeholders in recent years.  

This report seeks to develop new ways of characterizing and visualizing driver interactions 

with automated systems while mapping potential error types to different aspects of drivers’ 

mental models. The resulting technique and visualization approaches should give 

researchers new tools as they consider the role and impact of new technology on driver 

safety and performance.  

This report is an outcome of a cooperative research program between the AAA Foundation 

for Traffic Safety and the SAFER-SIM University Transportation Center.  
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Abstract 

Advanced vehicle technologies are increasingly more accessible and available in vehicles. 

These current and future systems, despite promising added safety, convenience, and 

efficiency to drivers and road users, have an inherently higher level of complexity than the 

driving systems that most drivers are used to operating. In order to maximize the promised 

benefits, drivers will need to have a good understanding of these systems—referred to as 

mental models—in order to use them safely and appropriately. Previous research has 

identified drivers’ gaps in knowledge of advanced vehicle technologies. Beyond users’ 

knowledge of a system, understanding and defining a user’s mental model is critical for 

many aspects of advanced vehicle technologies, including the design of, training for, and 

use of these systems. However, characterizing a driver’s mental model is still a significant 

challenge. Moreover, these gaps and challenges will only be further accentuated with more 

complexity in vehicle automation, especially with higher levels of automation.  

This research was conducted to better elucidate advanced vehicle technologies from a user 

control perspective, to examine driver interaction with such complex systems, and to 

characterize driver mental models in this context. This is achieved through: (i) a review of 

the current state and complexities of one advanced vehicle technology—Adaptive Cruise 

Control (ACC)—and its associated documentation, (ii) a review and synthesis of existing 

literature on mental models and error-making, (iii) the development of a task analysis for 

driver-automation interactions, and (iv) the building of a framework to help examine user 

interactions with complex systems to identify sources and probabilities of error commission. 

This document also reports on an examination of the limitations of various ACC systems in 

the current market in the context of manufacturer’s reporting of such limitations. 
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Introduction 

Advanced vehicle technologies are increasingly more accessible and available in late model 

vehicles, with the promise of even more advanced systems, including automated driving 

systems (ADS), in future vehicle generations. These current and future systems, despite 

promising added safety, convenience, and efficiency to drivers and road users, are 

inherently complex. The complexity of these sophisticated systems and combinations of 

systems have the potential to fundamentally change the way drivers operate. As these 

systems take on more of the driving responsibilities, drivers may relegate more control to 

these systems resulting in potentially negative consequences. The potential manifestation 

of these negative consequences will depend on the driver’s knowledge and understanding of 

these systems. A driver’s knowledge and understanding of a system can be termed as the 

driver’s mental model of the system.  

The quality of a driver’s mental model plays an important role in the safe, efficient, and 

appropriate use of these systems. A driver’s mental model will define one’s understanding 

of the capabilities and limitations of a system, and as a consequence, will allow for 

identification and appropriate management of the current mode of operation of these 

advanced vehicle technologies. A low-quality mental model, be it incomplete or inaccurate, 

can have significant consequences on a driver’s expectations of a system, on reliance and 

use, and can also impact trust and acceptance of the system. Previous research has 

identified drivers’ gaps in knowledge of advanced vehicle technologies (e.g., McDonald et al., 

2018) but defining and characterizing a driver’s mental model is still a significant 

challenge. Moreover, these gaps and challenges will only be further accentuated with more 

complexity in vehicle automation, especially with higher levels of automation.  

One way to understand drivers’ use of these systems is by examining how errors in their 

understanding may impact their interactions with such systems, and the subsequent 

impacts on safety and performance. To do so, a critical early step may be to develop a 

taxonomy of the potential types and categories of such errors. For example, errors in mental 

models can be due to misunderstandings of how a system operates, what is the system 

function, and what are the limitations. Also, different classes of errors (errors of 

commission vs. omission; skill vs. rule vs. knowledge; etc.) may have varying levels of 

impact. For example, a misunderstanding of the system’s operational design domain (ODD) 

might lead users to engage the system in situations that it is not equipped to handle. In 

contrast, poor feedback from the system can lead to mode confusion, where the driver is 

unaware of the current state and who is responsible for what driving activities—whether 

driver or vehicle. Furthermore, different classes of vehicle functions may be impacted 

differentially. Thus, a comprehensive examination of the types of errors and corresponding 

potential impact on driver interactions with advanced vehicle technologies can form the 

important basis for future work related to drivers’ mental models. It can help define critical 

assessment of the quality of mental models and can help identify evaluation scenarios that 

can be used in the empirical study of mental models and performance outcomes. 

This research was conducted to facilitate a better understanding of advanced vehicle 

technologies from a user-control perspective, to examine driver interaction with such 

complex systems, and to help better characterize driver mental models. While the goal of 

the research is related broadly to advanced vehicle technologies, for the actual research 

implementation and approach a narrower focus was made on Advanced Driver Assistance 
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Systems (ADAS), specifically Adaptive Cruise Control (ACC). The approach and framework 

however remain relevant to a broader definition of advanced vehicle technologies and can 

be adapted and generalized to other ADAS and ADS. This current work thus extends the 

prior literature with a specific focus on users’ mental models and the operation of advanced 

vehicle systems and proposes a process and framework for identifying operator-based errors 

in the use of such systems.  

The rest of this report documents the research conducted towards these objectives, 

including: (i) a review of the current state and complexities of one advanced vehicle 

technology (ACC) and associated documentation, (ii) a review and synthesis of existing 

literature on mental models and error-making, (iii) the development of a task analysis for 

driver–ADAS interactions, and (iv) the building of a framework to help examine user 

interactions with complex systems to identify sources and probabilities of error commission. 

This document also reports on an examination of the limitations of various ACC systems in 

the current market in the context of manufacturer’s reporting of such limitations.  

Background 

In recent years, major automobile manufacturers have released vehicles with advanced 

technologies as either standard or optional features. These technologies include systems 

categorized as ADAS, Driver Support Features (DSF), or active driver assistance systems 

(e.g., SAE, 2018). The availability of these systems was previously limited to higher-end 

vehicles and thus to a smaller population; however, lately the general driving population 

has been rapidly exposed to these systems with the rapid deployment and increased 

consumer awareness. Drivers are exposed to DSF given their easy availability and 

accessibility in the mass-market fleet (Milakis et al., 2017; HLDI, 2017). Current important 

components of DSF include systems that are capable of assisting the driver in maintaining 

longitudinal control (ACC, traffic jam assist, etc.) and lateral control (lane keeping assist, 

steering assist, etc.), with the goal of enhancing driver performance and contributing 

towards improving the overall safety and harmony of the roadway ecosystem (Bengler et 

al., 2014; Lang et al., 2014; Friedrich, 2016; Fisher et al., 2020). Despite the promise of 

convenience and assistance, these systems continue to rely on the human for monitoring 

and supervisory tasks. These requirements may result in various negative consequences, 

including drivers getting “out-of-the-driving-loop,” developing negative behavioral 

adaptation, and encountering mode confusion, among others (Stanton & Marsden, 1996; 

Kaber & Endsley, 1997; Rudin-Brown & Parker, 2004; Fisher et al., 2020). All these can 

ultimately manifest as driver errors leading to crashes or conflicts.  

There are many sources for driver error in human–machine interactions, including through 

inappropriate decision making due to rule-based or knowledge-based errors, or due to users’ 

misconceptions about the systems, a consequence of gaps in users’ mental models (Sarter & 

Woods, 1995; Norman, 2013; Endsley, 2015; Victor et al., 2018). Driver error thus plays a 

critical role in motor vehicle crashes, especially when considering safety critical systems. In 

widely cited research, drivers have been assigned as the critical reason in 94% of crashes 

(where the critical reason is characterized as the last event in the crash causal chain; 

Singh, 2015). Furthermore, among these, it has been estimated that recognition errors 

accounted for 41% of the crashes, while decision errors and performance errors accounted 

33% and 11% of the crashes, respectively (Singh, 2015). This underlines the importance of 

understanding the different types of errors and the mechanisms behind those, especially in 
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the context of advanced vehicle technologies. Foundational research has examined such 

operator errors broadly, including errors during the driving task (Stanton & Salmon, 2009).  

The following subsections briefly review the literature on human errors and classification, 

mental models and drivers’ use of vehicle systems, and the use of task analysis in 

deconstructing complex tasks to identify user errors. 

Errors 

Various classifications of human errors have been proposed over the years with three being 

largely prevalent in literature: Reason’s slips, lapses, mistakes, and violations (Reason, 

1990); Rasmussen’s skill, rule, and knowledge errors (Rasmussen, 1988); and Stanton and 

Salmon’s psychological mechanism–based errors (Stanton & Salmon, 2009). Reason’s 

taxonomy classified errors in terms of slips (attentional failure), lapses (memory failure), 

mistakes (intention failure), and violations. Slips occur when the goal of a task is correct, 

but the task itself (the action) is performed incorrectly due to proximal controls or other 

factors (e.g., switching on the windshield wipers instead of turn signals). Lapses are 

generally reserved for memory failures (e.g., driving without fastening the seatbelt even 

though the intent was present). Mistakes occur when the goal, plan, or the task/action is 

incorrect (e.g., using gas pedal to disengage ACC). Violations refer to behaviors that deviate 

from accepted standards and procedures (e.g., deliberately going over the speed limit). It 

has been stated that slips and lapses are largely due to inattention while mistakes are due 

to the application of a bad procedure or misapplication of a procedure (Reason, 1990).  

On the other hand, Rasmussen classified errors on the basis of behaviors related to skill, 

experience, and familiarity with a scenario. Skill-based behaviors arise from expertise at a 

particular task, where the task becomes routine and can be performed with minimal 

conscious attention. Skill-based behaviors could be as trivial as “turning or handling the 

steering wheel to maintain lane position,” which does not require conscious decision making 

and is fairly routine during a driving task. Rule-based behaviors generally occur when a 

new, but familiar situation arises, but there are known rules or guidelines to perform tasks 

relevant to that situation. Rules could also be behaviors or actions that are learned through 

previous experiences that apply a context- or situation-based response, such as, “if the car 

is not switched on, then turn the key or press the ‘start’ button.” Knowledge-based 

behaviors become relevant when unfamiliar situations occur, where the application of skills 

and rules may not apply. In these situations, the user may need to undertake several 

decision-making and problem-solving techniques and then modify them based on whether 

the outcome was successful or not. For example, on a slippery road where the vehicle loses 

traction, the routine handling of the steering wheel or rules regarding lane keeping may be 

deemed unsafe to the driver, and they may need to employ a response action plan in order 

to properly maneuver the vehicle to safety. Driving is a task that requires all three of these 

behaviors: it is a fairly routine task based on the skill of the driver (skill-based), it requires 

attention and situational awareness in unfamiliar situations (knowledge-based), and 

requires responses and appropriate actions to unfamiliar situations based on memory (rule-

based) (Rasmussen, 1988). Consequently, the types of errors that drivers commit can be 

described within the aspects of these three behaviors. Reason’s and Rasmussen’s 

classifications have a common ground: It could be said that slips and lapses occur at a skill-

based level, while mistakes occur at rule-based and knowledge-based levels.  
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Stanton and Salmon included the underlying psychological mechanisms in their taxonomy 

of driver errors (Stanton & Salmon, 2009). They stated that errors can be classified as 

action errors, cognitive and decision-making errors, observation errors, information and 

retrieval errors, and violations. Each of these error types will also have several unique error 

modes related to them to represent the exact nature of the error made by the user or the 

probable cause for that error. For example, a user may have made a cognitive and decision-

making error due to a perceptual failure (failed to look at the right spot to detect objects in 

trajectory) or due to a wrong assumption (assumed the given trajectory was not set for 

colliding with another object). Similarly, a user may have made an action error due to them 

performing the action at a wrong time (driver turned on their blinkers too late when 

changing lanes) or due to failure to act to a particular situation (failed to check their side 

mirrors when changing lanes). Stanton and Salmon’s taxonomy is especially helpful when 

considering the wide variety of errors that can occur while operating a vehicle. This usually 

requires continuous observation of the surroundings and vehicle functions; retrieving 

information from these observations; and processing this information to make decisions, 

plan the right sequence of actions, and then execute them. The prediction and identification 

of human error is achieved through the use of formal human error identification (HEI) 

techniques using a taxonomy to identify errors that could potentially occur during task 

performance. 

Mismatches or inaccuracies in a drivers’ mental model of a system can result in errors 

while operating the system. Errors may occur for several reasons, the most common reason 

being the complexity of the task and procedures that require the user to maintain attention 

over a prolonged duration of time and have specialized skills to perform several tasks in the 

correct sequence (Norman, 2013). Operator performance and error are related; errors are 

categorized from the quality of the performance (Woods et al., 1994). To understand the 

operator errors while using DSF, it is important to understand the different types of errors 

that may occur while performing the tasks required to optimally use the system. 

Mental Models 

Driver support features in vehicles are designed for the user (driver) to be in the loop of the 

operations (Parasuraman & Riley, 1997). That is, drivers need to be aware of not only what 

is going on in the driving environment, but also aware of the status and conditions of the 

DSF itself. A driver’s awareness and knowledge about such a system is dictated by the 

accuracy and completeness of their mental model about the system. To examine driver 

understanding and use of systems, it is important to examine the decision-based and trust-

based actions undertaken by the driver. It is in these actions that errors may arise, 

influenced to a large extent by the characteristics of the user’s mental models and 

especially the gaps in said models (Endsley, 2015; Victor et al., 2018; Seppelt & Victor, 

2020). Mental models have been defined as “the rich and elaborate structure which reflects 

the user’s understanding about the system’s contents, its functionality and the concept and 

logic behind the functionality" (Carroll & Olson, 1987). It has also been defined as “a 

representation of the typical causal interconnections involving actions and environmental 

factors that influence a system’s functioning” (Durso & Gronlund, 1999).  

To understand how a mental model is first constructed and then updated, it is helpful to 

understand the concept of situation models. While mental models may represent a user’s 

overall generic knowledge about the system, the situation model represents the user’s 
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knowledge and comprehension of the system’s current state in a dynamic environment 

(Endsley, 2000). A situation model may include not only knowledge about various 

parameters or values of a system’s continuous functions (e.g., minimum speed required to 

activate cruise control, the level of the fuel gauge, etc.), but also knowledge about the 

dynamics of the system (e.g., trajectory of the vehicle, safe following distance from a lead 

vehicle, etc.), which is developed by experiencing various situations over time. Stokes et al. 

(1997) had expert and novice pilots listen to radio communications and build a mental 

picture about the described situations, and then select the best representation of situations 

from a set of diagrams. They found that experts were better than their novice counterparts 

at matching the correct diagram to the descriptions. Hence, it was concluded that “experts 

are better able to make practical use of situational schemata to impose form on sensory 

data in real time” (Stokes et al., 1997). Another example can be derived from a study by 

Paull and Glencross (1997) that compared a baseball batter’s ability to anticipate the 

direction of a pitch. Expert batters were able to identify visual cues and make quicker and 

more accurate predictions due to the experience and knowledge developed over time. A 

mental model can manifest several situation models, which are formed in different ways as 

a result of environmental input (bottom-up) and top-down knowledge structures. 

Misinterpretation of a particular situation can result in incorrect or inaccurate mental 

models. Experiencing a situation can help update and potentially improve the mental 

model. Situation models and mental models thus go hand-in-hand and encountering more 

situations helps to construct and to update appropriate mental and situation models (Durso 

et al., 2017). Mental models are thus continuously updating as knowledge is stored in long-

term memory and is available for processing when encountering familiar scenarios 

(Beggiato & Krems, 2013). 

The scientific literature suggests that many users of DSF are not accurately aware of the 

functionality and limitations of the systems. For example, in a survey conducted on 370 

ACC drivers, about 72% were unaware of the system functionality and limitations (Jenness 

et al., 2008; see also McDonald et al., 2018). In another study, 60% of drivers reported 

having only read half of the owner’s manual and 40% did not read it at all (Mehlenbacher et 

al., 2002). Drivers with no prior experience of driving with ACC did not have a suitable 

mental model of ACC, and this worsened if they did not read the vehicle owner’s manual 

due to the absence of an initial pre-use knowledge-based mental model (Beggiato & Krems, 

2013; Larsson, 2012). Moreover, Singer and Jenness (2020) found that the framing and 

emphasis of instructional material can have an impact on a user’s initial mental model; 

information that places an emphasis on the vehicle capabilities and features can lead to 

overestimation of its abilities. Research shows that a user’s mental model converges with 

the ideal mental model, with a realistic view of system functionality, over time and with 

experience (Beggiato & Krems, 2013). In fact, when drivers were informed (i.e., read 

through the owner’s manual), trust and reliance on the system increase over time; however, 

for drivers who were unaware of potential limitations (i.e., did not read through the owner’s 

manual), trust and reliance on the system decreased dramatically. This suggests that 

learning, trusting, accepting, and using DSF depends on the driver having an appropriate 

initial mental model (Victor et al., 2018; Beggiato et al., 2015). Although mental models are 

vague concepts that are hard to quantitatively characterize, identifying and classifying the 

errors made by operators while using a system can potentially be used to characterize 

users’ mental models and assess accuracy or completeness. 
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Task Analysis 

In order to understand drivers’ mental models of DSF, as well as track the errors they may 

commit while using them, it is critical to analyze the functioning of the system based on the 

required tasks or sequence of tasks. Task analysis is a popular human factors method that 

has been used to explore users and user behavior by observing them in detail while they 

perform different tasks to achieve a required goal (McCormick, 1979). Several task analysis 

approaches such as Hierarchical Task Analysis (HTA); the Goals, Operators, Methods and 

Selection rules (GOMS); and ConcurTaskTrees (CTT) have been used in past research for 

error identification in human–machine interaction (Limbourg & Vanderdonckt, 2004). They 

have been used to combat omission-based errors (Reason, 2002), for identifying errors in 

medication administration (Lane et al., 2006), and in identifying errors in electronic circuit 

design (Kieras & Butler, 1997), among other applications. 

Using task analysis, it is possible to describe the various states and state changes available 

in a DSF system, to list the tasks that each state change represents, and identify the 

different subtasks that contribute to these state changes. In this context, a “state” of a 

system can be envisioned as a specific condition of that system, characterized by a 

combination of functionality and system parameters. For example, a system can have an 

“off” state where no features are activated, or an “on and feature 1 engaged” state. A system 

can transition between these defined states via various inputs or actions, either user-

initiated or based on system factors or external factors.  

In the past, several task analysis techniques such as Systematic Human Error Reduction 

and Prediction Approach (SHERPA) or Task Analysis for Error Identification (TAFEI), 

have been used to combine the hierarchy of activities with different error taxonomies to 

identify error modes relevant to each task during a state change (Embrey, 1986; Baber & 

Stanton, 1996; Stanton & Baber, 2005). By utilizing appropriate taxonomies, it is possible 

to identify user errors, their causal factors, and potential remedies to avoid those errors in 

future operations. Identifying users’ errors could also lead to improving understanding of 

users’ mental models and identify any mismatches that may be the underlying causal 

factors behind those errors. 

Objectives 

This research was undertaken with the following two main objectives related to the 

examination of the role of operator errors in the characterization of mental models of 

vehicle systems:  

• To describe advanced vehicle technologies from a human operation perspective 

considering system functionalities, capabilities, limitations, controls, and displays. This 

was undertaken by a review of the scientific and technical literature, and by creating 

visual descriptions for a selected range of systems using state diagram notations.  

• To propose a framework for identifying and predicting operator errors when using such 

systems. Multiple task analysis techniques were leveraged and adapted to identify 

potential operator errors that may occur while using a system; these identified errors 

were classified based on adapted versions of existing error taxonomies. 

In addition to the above primary objectives, this research also raised a secondary question 

related to the reporting of system limitations of vehicle makes/models. To address this 



 

7 

 

question, manufacturer materials were studied and contrasted to examine the level of 

detail in reporting of system limitation across selected vehicle makes and models. 

The subsequent sections of this report provide detailed methodology for the research that 

addresses the main objectives, as well as a brief description and discussion of the outcome 

of the above-mentioned secondary question.  

Describing Advanced Vehicle Technologies 

As previously mentioned, the broad goal of this research is relevant to general advanced 

vehicle technologies. However, the current research was conducted in the context of ADAS 

technology, specifically ACC. An ACC system can essentially be considered a complex 

system consisting of various possible modes in which it could be or, more specifically, states. 

Each state can represent a unique condition and function with regards to the overall 

operation of the system. For example, “ACC is engaged (with no lead vehicle present)” can 

be considered a unique state that functions similar to a conventional cruise control system, 

maintaining the vehicle at the speed value set by the operator. This state is different from a 

state “ACC is engaged (with lead vehicle present).” In the latter, the ACC maintains a set 

distance from the lead vehicle, while its speed is also maintained relative to the lead 

vehicle’s speed.  

State Diagrams 

To better describe these systems comprehensively while taking all states and conditions 

into consideration, and to conduct a thorough task analysis in terms of operator 

interactions, one approach is to characterize the complex systems as a finite state machine 

(i.e., a system that can be in one of a finite number of states at any given time). This lends 

itself to a visual characterization of systems using standard notations and diagrams used 

for state diagrams. Below the process is outlined and the representation of an ACC system 

is described using a state diagram.  

A typical ACC system maintains a vehicle at a constant speed at a value set by the driver 

but is capable of automatically adjusting the vehicle speed to maintain a defined distance 

from the vehicle ahead (Jones, 2013). Similar to other DSF, ACC can only assist the driver 

with certain driving tasks but is not capable of driving the vehicle by itself. Drivers are 

expected to be in the control loop at all times. For the purposes of this illustrative example, 

instead of using a real-world system, a generic ACC system is considered. This generic 

system is based on common features found in the ACC systems of popular vehicles and is 

thus representative of most manufacturers’ ACC offerings. However, in order to deconstruct 

an ACC system into different states it is helpful to understand the system’s design and 

functions as described by its manufacturer, with the owner’s manual being a credible and 

accessible source of information. In addition to the information obtained from the vehicle 

owner’s manual, online videos produced by manufacturers to showcase and explain the 

ACC features of the vehicle can be used to understand and gather specifics of the ACC 

system. Other supplementary or technical information might be gleaned from online 

automotive forums, professional automobile mechanics, and technical experts. The generic 

ACC system described here was thus based on multiple manufacturers’ ACC offerings but 

constructed to contain the most common features across all manufacturers.  
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Figure 1. State diagram for a generic Adaptive Cruise Control system  

(Note. LV=Lead Vehicle) 

This ACC system can thus be described as having five unique states:  

• State 0—ACC is not switched on 

• State 1—ACC is switched on but unengaged1  

• State 2—ACC is engaged (with no lead vehicle present)  

• State 3—ACC is engaged (with lead vehicle present)  

• State 4—ACC is temporarily disengaged 

 

 

1 At this juncture, it is necessary to make a note about nomenclature and definitions. A typical ACC 

system may have two modes that characterize its operational status. For one, it might be physically 

unavailable (based on the ODD) or turned off. Alternatively, it might be available but not activated, 

or engaged. In this document the former is referred to as off (cf. on), and the latter as disengaged (cf. 

engaged). In manufacturer materials and other documentation such terms are often used 

interchangeably or in a non-standardized way.  



 

9 

 

Connectors between each state can represent the change of state, or transitions from one 

state to another. These elements can be visually represented in a State Diagram as 

illustrated in Figure 1, with States represented by circles and the transitions represented 

by the arrows connecting the circles.  

The state diagram details each state of the ACC system, as well as the user-initiated, 

system-initiated, or externally initiated events, tasks, or subtasks that result in transitions 

between states. There is a considerable level of detail that can be included in a state 

diagram given the complexity of the system under consideration. In this case, the main 

purpose is to understand the system from an operator interaction point of view, and 

therefore the diagram emphasizes operator actions. It is also important to understand what 

other factors—external and systemic—may influence non-driver-initiated transitions 

between states, thus requiring the addition of such transitions in the diagram.  

For consistency and accuracy, building state diagrams based only on the information and 

material provided about the systems as described in the vehicle owner’s manuals, or from 

the manufacturer websites may be a best practice. Using the described approach, state 

diagrams were constructed to describe the ACC features of a selected set of vehicle makes 

and models (Ford F-150, Toyota RAV4, Volvo XC60, Honda CR-V, Subaru Outback). These 

vehicles were selected on the basis of popularity (based on 2018 sales figures), and to 

represent mass-market makes and models, as well as examples of higher-end vehicles. 

Appendix A contains the state diagrams for the vehicles. As can be seen from these 

diagrams (and from the generic diagram in Figure 1), there is a certain level of 

commonality across these systems. However, there are also important differences between 

the systems, especially in terms of the variability for the possible transitions and the 

actions underlying these transitions. There are also differences in the presence of 

intermediate states for some manufacturers, with higher-end models potentially providing 

more features (e.g., Volvo’s Passing Assistance) that translate to additional unique states. 

The state diagrams are also an important visual indication of the inherent complexity of 

these systems. This level of complexity could increase for other systems what incorporate 

more features (and thus states) but still require significant user involvement to operate and 

transition between states (e.g., L2 systems). 

Framework for Predicting and Identifying Operator Errors 

An important objective of this research was to conceptualize a framework to identify errors 

in the use of DSF systems to help understand drivers’ mental models. To do so, multiple 

task analysis techniques were leveraged and adapted to identify operator errors that may 

occur while using a system, and to classify these identified errors based on error 

taxonomies. This approach was informed by outcomes from the previous exercise of 

describing ACC systems from an operator interaction context. The state diagrams and 

transitions provided a comprehensive detailing of the various operator-initiated state 

changes in the system, along with related interactions and controls. The diagram also listed 

non-user-initiated transitions and helped identify what state transitions were not possible 

in any given system. The state diagrams and task analyses were thus used to describe 

operator–system interactions using transition matrices to identify state transitions and 

associated controls, to ultimately identify and predict potential errors that could result 

during these operations.  
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Transition Matrices 

When considering state transitions, and especially since not all states can transition to 

every other state available in the system, it is important to keep track of transitions that 

are possible (or legal) given the design of a system, or not possible or not meaningful under 

the design constraints. Transition matrices are useful tools to do so, and can track possible, 

meaningful transitions and highlight transitions deemed impossible or non-meaningful 

(Embrey, 1986; Baber & Stanton, 1996; Stanton & Baber, 2005). The transition matrix 

accompanying the generic state diagram in Figure 1 offers a roadmap to further explore 

meaningful transitions and disregard transitions that are not possible or irrelevant 

(Table 1). 

Table 1. Transition matrix for the states of the generic ACC system 

States 0 1 2 3 4 

0  ✓    

1 ✓ ✓ ✓   

2 ✓ ✓ ✓ ✓ ✓ 

3 ✓ ✓ ✓ ✓ ✓ 

4 ✓ ✓ ✓   

Note. ✓= Transition possible,  = Transition not possible 

System Controls and Operator Interaction 

Using the state diagram, the system functions can be visualized at different states, along 

with user-initiated actions or conditions required for those possible transitions listed in 

Table 1. ACC systems, such as the generic ACC system considered here, comprises user 

controls such as buttons, switches, levers, or other in-vehicle controls. These typically 

include: Brake Pedal, Gas Pedal, ACC On/Off Switch, Res+ Button (Resume/Increase Speed 

Value), Set− Button (Decrease Speed Value), Dist+/− Button (Increase/Decrease Distance 

from Lead Vehicle), and Cancel Button. The nomenclature, marking, design, position, form, 

and locations of these buttons may vary for systems of different vehicle models, but their 

functions remain largely similar. Operators interact with ACC systems using these 

controls, essentially using these operator actions or inputs as a way to change between 

various states of the system. Potential operator errors can manifest during these 

interactions or as a result of a lack of an interaction.  

Tasks and Subtasks for State Transitions 

State transitions can be characterized by tasks and subtasks, with task being the end goal 

of the state transition, while subtask is the user-initiated action or input (or system-

initiated or external condition) required to undertake the task. Each state transition can be 

comprehensively analyzed to list the control-based errors that a user may commit while 

attempting to undertake the actions required for the desired transition. Table 2 shows the 

tasks and subtasks related to each transition for the generic ACC system.  
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Table 2. Tasks and subtasks for each state transition in the generic ACC system 

 
State 

Transition 
Task (Transition Goal) Subtask (User inputs) 

1 0 to 1 Switch ACC On Press ACC On/off button 

2 1 to 0 Switch ACC Off when ACC is switched on Press ACC On/Off button 

3 1 to 1* 

Continue driving with ACC switched on: 

• No change in set speed or distance 

• Change set speed 

• Change set distance 

 

• No inputs 

• Press Res+ or Set−  

• Press Dist Switch 

4 1 to 2 Engage ACC (no Lead Vehicle (LV)) Press Res+/Set− (Speed > 25 mph) 

5 2 to 0 Switch ACC Off when engaged (no LV) Press ACC On/Off button 

6 2 to 1 Disengage ACC (no LV) Press Brake or Press Cancel 

7 2 to 2* 

ACC engaged (no LV): 

• No change in set speed or distance 

• Change set speed 

• Change set distance 

 

• No inputs 

• Press Res+ or Set−  

• Press Dist Switch 

8 2 to 3 
Automatic Transition—ACC engaged with LV 
(e.g., LV merges into driver’s lane) 

 

9 2 to 4 
Temporarily override ACC (Speed & Distance 
overridden; no LV) 

Press Gas Pedal 

10 3 to 0 Switch ACC Off when engaged (LV Present) Press ACC On/Off button 

11 3 to 1 Disengage ACC (LV present) Press Brake or Press Cancel 

12 3 to 2 
Automatic Transition—ACC engages with no LV 
(e.g., LV exits lane/road) 

 

13 3 to 3* 

ACC engaged (LV present): 

• No change in set speed or distance 

• Change set speed 

• Change set distance 

 

• No inputs 

• Press Res+ or Set-  

• Press Dist Switch 

14 3 to 4 
Temporarily override ACC (Set Speed and Set 
Distance overridden; LV Present) 

Press Gas Pedal 

15 4 to 0 Switch ACC Off from the override state Press ACC On/Off button 

16 4 to 1 Disengage ACC from the override state Press Brake or Press Cancel button 

17 4 to 2 Engage ACC from the override state Release Gas Pedal 

* - No state changes take place, but parameters of the particular state may change (e.g., distance settings may 
change) 

 

Error Identification and Classification  

For each of these transitions, there is a possibility that the driver performs the incorrect 

subtask (user input) that does not contribute towards the desired transition or fails to 

perform the correct input, which may negatively affect the overall functioning of the 

system. In some cases, there is little or no consequence for these incorrect inputs, while 

others can result in the system transitioning to unwanted states. These incorrect inputs 

may be performed due to several reasons ranging from wrong assumptions, incomplete 
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understanding of the control functions, or unintentional actions, among others. These 

erroneous actions can be mapped onto underlying behavioral and cognitive reasons for the 

error being committed.  

To do this, a systematic process was designed that allowed the researchers to identify 

potential error actions that could be undertaken by a user, based on the above-mentioned 

state transitions and the actions associated with their subtasks. The process also allowed 

the researchers to attribute multiple potential reasons behind the commission of these 

errors and thus map these errors to underlying behavioral, cognitive, or other reasons. 

Undertaking this error prediction and identification exercise can yield a comprehensive 

error listing that can be further categorized according to existing taxonomies. To that end, 

this research adapted Stanton & Salmon’s (2009) taxonomy with additional error types 

deemed relevant to this framework.  

Table 3. Operator error taxonomy (adapted from Stanton & Salmon, 2009) 
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The reasoning behind why the driver may have performed the incorrect subtask could be 

classified under one or more error types found in the taxonomy. It is important to note that 

activating or using some of the controls that were required during the driving task were not 

considered as errors unless they contributed directly to the activation, deactivation, or 

transition from a state. To illustrate this exception, consider the following example: For a 

transition from State 0 to State 1 in Table 2, the task is to switch on ACC by performing the 

subtask “Press ACC On/Off button.” The driver is engaged actively in the driving task. This 

would mean that use of the brake pedal or the gas pedal would not be characterized as an 

incorrect subtask. On the other hand, pressing the“Res+” button, the “Set−” button, the 

“Dist+/−” button, or the “Cancel” button would be characterized as incorrect actions since at 

State 0 these buttons are not required for the active driving task and do not contribute 

towards the transition to State 1.  

Table 4 illustrates a transition from State 0 to State 1, where the user could undertake the 

wrong action—pressing the “Res+” button—instead of correctly pressing the “ACC On/Off” 

button. The table describes the different reasoning for the wrong action based on an 

adapted Stanton & Salmon’s error taxonomy (Stanton & Salmon, 2009). Two other 

taxonomies, namely, Rasmussen’s taxonomy of Rule-based, Skill-based, and Knowledge-

based errors, as well as Reason’s Slips, Lapses, Mistakes, and Violations could also be 

applied to Table 3, either as additional or standalone taxonomies (Rasmussen, 1988; 

Reason, 1990). 

Table 4. Categorizing incorrect subtask by error types 

 Why would driver perform the 
incorrect action Error types based on Taxonomy 

1 Driver thought Res+/Set− turns ACC 
on 

• Inappropriate action—intentional (Action Error) 

• Wrong assumption (Cognitive/Decision Making Error) 

2 Driver assumed speed had to be set 
before switching on ACC 

• (Knows Res+/Set− does not turn 
on ACC) 

• (Knows Res+/Set− sets the speed) 

• Inappropriate action (Action Error) 

• Wrong order of action in sequence (Action Error) 

• Wrong assumption (Cognitive/Decision Making Error) 

• Misunderstood information (Information Retrieval Error) 

3 Unintentionally pressed Res+  

• (bumped it) 

• (Knows correct button to be 
pressed is ACC on/off) 

• Wrong action—unintentional (Action Error) 

• Distraction (Cognitive/Decision Making Error) 

• Inattention (Cognitive/Decision Making Error) 

4 Unintentionally pressed Res+ 

• (Thought they were pushing ACC 
on/off) 

• (Knows correct button to be 
pressed is ACC on/off) 

• Wrong action—unintentional (Action Error) 

• Right action wrong location (Action Error) 

• Perceptual (Cognitive/Decision Making Error) 

• Inattention (Cognitive/Decision Making Error) 

• Misjudgment (Cognitive/Decision Making Error) 

• Misread information (Information Retrieval Error) 

• Misunderstood information (Information Retrieval Error) 

• Wrong information retrieved (Information Retrieval Error) 
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This approach and framework provide a structure for selecting specific user actions for 

various system-related functions and identifying potential erroneous actions and categories 

that can occur as a result of various operator-related factors. This can then form a basis for 

gaining a deeper understanding of the driver error types based on underlying factors or 

mechanisms. It can also provide a structure to empirically evaluate the error making as a 

potential approach for classifying an operator’s mental models of a system. Finally, such a 

listing provides important content for training, i.e. familiarizing users with system 

capabilities, and testing for accuracy of drivers’ understanding and knowledge of such 

systems.  

Reporting of System Limitations across Vehicle Makes/Models  

The main objectives of this research study required an in-depth understanding of 

manufacturers’ offerings in terms of ACC Systems. The close examination of manufacturer 

provided material describing these systems were critical to both describing and visualizing 

these systems, and for the process of identifying and predicting errors in operation of these 

systems. In the process of examining these systems, the reported limitations of each system 

were also studied, given the importance of their role in error identification. This raised an 

interesting secondary question—whether there were differences in the way system 

limitations are reported across vehicle makes/models.  

Despite the secondary nature of this question, it is an important one because although ACC 

systems may improve safety, they are complex systems and do have inherent limitations. 

These limitations are not intuitive and drivers may not understand these limitations 

accurately. As mentioned earlier, drivers’ mental models are seeded by their knowledge and 

experience with systems. This in turn affects the framing of drivers’ expectations, 

engagement, trust, and usage of these systems. Initial knowledge about these systems is 

thus critical to the evolution of high-quality mental models (cf. Singer & Jenness, 2020). For 

most users, a credible and easily available source of such information comes from 

manufacturers materials in the form on owner’s manuals and other publications. However, 

previous research has shown that vehicle owners’ manuals vary widely in terms of 

completeness and level of detail about vehicle technologies (AAA, 2019; Wright et al., 2020). 

Accordingly, this research team was interested in examining variability in the listing of 

ACC-related limitations in owners’ manuals across various makes/models of vehicles with 

ACC.  

In order to do so, the extensive review of ACC from owners’ manuals, which had been 

undertaken for the primary objectives of this study, was leveraged. The aim of this exercise 

was to identify all reported limitations of ACC across several different manufacturers, and 

to examine how these limitations are described in different owners’ manuals and whether 

the presentation of these system limitations is consistent and comparable across 

manufacturers.  

Approach: Selection of Manufacturer Materials & Information Retrieval 

In addition to the five vehicle models that were studied for the previous objectives, the 

researchers added five more makes/models of vehicles—again selected based on sales data. 

The ten selected manufacturers and their best-selling models for 2018 are listed in the 
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Table 5. Relevant vehicle owner’s manuals were procured for the appropriate year for each 

vehicle model to examine their reporting of ACC limitations.  

Table 5. Vehicle manufacturers/models studied for ACC limitations 

Manufacturer Model 

Ford F-150 

Toyota RAV4 

Volvo XC60 

Honda CR-V 

Subaru Outback 

Jeep Cherokee 

Nissan Rogue 

Hyundai Elantra 

Mazda CX-5 

Mitsubishi Outlander 

 

ACC system limitations information was extracted from the text of the vehicle user 

manuals. The manuals presented this information in a non-standardized manner with 

significant differences in reporting style, including variability in terminology, emphasis on 

safety, and descriptions of scenarios and limitations, as well as variations in 

locations/sections in the user manuals were the limitations reported. Manuals also often 

reported limitations of a system in more than one way or more than one location in the 

manual (e.g., “system may not work properly if there is bad weather condition” and “do not 

use the system in poor visibility, fog, rain, snow”). This task resulted in a comprehensive 

list of reported limitations per vehicle model. This listing was used as the basis for two 

analyses: First, a comparison of the reporting of these limitations across manufacturers, 

and second, a categorization of limitation types from a pooled list across manufacturers.  

Outcomes: Listing & Categorization of Reported System Limitations  

For the first analysis, the ten ACC systems were first compared to each other to assess if 

any system had additional features that could prevent a fair comparison of ACC across 

manufacturers. This was done since ACC systems from different manufacturers could differ 

in some functionalities due to additional features such as automatic braking, parking 

assist, traffic jam assist, etc. Although most of the systems had no significantly different 

feature sets, for those that did (e.g., Volvo Passing Assist) the reported limitations related 

to the exclusive features were excluded from their list of limitations.  

Then, the limitations reported for ACC by each manufacturer were tabulated by counting 

the number of limitations that were reported in each owner’s manual. This tabulation 

included every instance of a limitation type that was described in a manual, as long as it 

was not exactly repeated (see previous example of visibility). The counts for each vehicle 

model are reported in Table 6.  
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Table 6. Count of reported limitations per manufacturer 

Manufacturer Number of Limitations 

Subaru 35 

Mitsubishi 26 

Honda 23 

Toyota 20 

Hyundai 20 

Volvo 19 

Nissan 17 

Ford 16 

Jeep 16 

Mazda 13 

 

For the second analysis, these limitations were used as a basis for creating a categorization 

of the scenarios and events when ACC would potentially fail or come close to failing. First, 

the list of all limitations from Table 6 (count = 205) were pooled. At this step, even if 

multiple manufacturers reported a similar limitation (e.g., “ACC does not work on steep 

grades”) these similar limitations were not combined but treated as unique instances of 

limitation reporting. This was done to preserve information about how the specific 

limitation was described or reported across manufacturers. Each of these limitations was 

then allocated to emergent categories based on their description. This resulted in the 

identification of 18 categories of ACC-specific limitations. These categories are listed in 

Table 7, along with the number of limitations (across all manufacturers) that constituted 

each category. The table also reports the number of owners’ manuals that described at least 

one limitation from that category.  
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Table 7. Categorization criteria for ACC limitations across ten vehicle models 

 Category Example of limitation description 
# of 

limitations  

# manual 
mentions  
(max. 10) 

1 Braking capacity 
".. (system) has limits when the decelerating vehicle in 
front unexpectedly slows down or suddenly brakes." 

8 7 

2 Curves 
"…may have detection issues when driving into and 
coming out of a bend or curve in the road." 

16 10 

3 
Heavy cargo/vehicle 
modification 

"Do not use the system if the vehicle is titled due to a 
heavy load or suspension modifications." 

19 8 

4 
Non-standard lead 
vehicle shape 

"Do not use the system when the vehicle ahead of you 
has a unique shape." 

7 4 

5 Off-set lead vehicle 
"...may have detection issues when the vehicle is 
driving on a different line than the lead vehicle." 

11 8 

6 On-coming traffic "...will not detect oncoming vehicles in the same lane" 7 7 

7 People/animals 
"Do not use on roads where there are pedestrians, 
cyclists." 

10 9 

8 Road infrastructure 
"Do not use the system when driving through a 
narrow iron bridge." 

8 6 

9 Road type 
"Do not use when driving in an urban or suburban 
environment." 

13 7 

10 Slow speeds 
"Detection error can occur when vehicles in front are 
traveling at low speeds." 

7 7 

11 Small vehicles 
"...does not brake for small vehicles, such as bikes and 
motorcycles." 

9 8 

12 
Stationary 
vehicles/objects 

"Stopped vehicles cannot be recognized by the radar." 9 8 

13 Steep grades "Do not use when driving on hilly roads" 14 8 

14 Swerving 
"Detection error can occur when steering wheel 
operation or your position in the lane is unstable." 

2 2 

15 Traction issues 
"Do not use when driving on rainy, icy, or snow-
covered roads" 

13 10 

16 Traffic 
"Do not use when driving in heavy traffic or when 
traffic conditions make it difficult to drive at a 
constant speed." 

10 9 

17 Visibility/weather 
"…may not work properly if there is bad weather 
condition." 

24 9 

18 Other 
"...may not operate temporarily due to electrical 
interference" 

18 8 

 

This exercise yielded rich information about the reporting of limitations for a manufacturer 

and allowed for a categorization of a large set of ACC-related system limitations. The 

general finding was that, even after accounting for differences in some additional ACC 

features, the reporting of potential ACC limitations was not even or consistent across the 

ten manufacturers. For example, some manufacturers listed as many as thirty-five system 

limitations, while some listed fewer than half of that number (see Table 6). It is difficult to 

judge from this exercise whether this variability in reporting across manufacturers is a 
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function of a particular manufacturer’s ACC system being more robust (and hence with 

fewer limitations), or if it is due to a less comprehensive coverage of limitations in their 

respective owners’ manuals. It is likely the case that some systems indeed have important 

safety-related limitations that are not communicated clearly or mentioned at all in the 

manuals. The implications and relevance of this question are further discussed in the 

subsequent sections.  

Discussion and Future Work  

The main objectives of the project were to describe advanced vehicle technologies from a 

human operation perspective while considering system functionalities, capabilities, 

limitations, controls, and displays and to propose a framework for identifying and 

predicting operator errors when using such systems. In this section, these tasks and related 

outcomes are reviewed while pointing to potential application areas and areas of future 

research. 

Mental Models and Advanced Vehicle Technology 

During human–machine interactions, humans may have gaps and misconceptions in their 

mental models (Sarter & Woods, 1995; Endsley, 2015). Since mental models are abstract 

concepts that are hard to define, it is challenging to characterize the accuracy or inaccuracy 

of a user’s mental model. One possible way to achieve this is by observing and identifying 

human errors that may be occurring as a result of inaccurate or incomplete mental models. 

In this research, state visualizations were employed as an approach to describe the 

complexity of advanced vehicle technologies. A framework was proposed for task analysis 

and as an approach to identify driver errors when using ACC systems (generalizable to 

other ADAS and ADS technologies). A generic ACC system was used as an illustration for 

how driver errors can be identified and mapped to deficits or gaps in their mental model. 

Using elements from a variety of task analysis techniques and error taxonomies, potential 

operator errors can be identified and classified. The method has potential to be used to 

identify errors while using other ADAS features such as Lane Keeping Assistant systems or 

future higher-level Automated Driving Systems (SAE, 2018).  

Advanced vehicle technologies are inherently complex, especially when compared to the 

vehicle functionalities that an average driver is knowledgeable about and comfortable with. 

It thus seems critical that a driver understands these complex systems well. Describing 

these systems textually may be a way to comprehensively cover all aspects of the system 

but may not be as easily understandable and accessible to a lay driver. The use of state 

diagrams to visualize system information can aid significantly in the understanding of the 

inner workings of the system. As a part of this effort, multiple ACC state diagrams from 

different manufacturers were compiled. This process helped highlight the fact that 

although the nomenclature and specific control/display/human–machine interface (HMI)  

design may differ between manufacturers or even models or years, most systems follow a 

generally similar construct, with similar controls and displays, and a relatively similar set 

of operating conditions.  
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Implications  

While this approach will help clarify and deconstruct a system’s states to a more technical 

audience, it also has the potential to be leveraged to describe complex systems to a less 

technical audience. When categorizing system limitations for ACC systems across different 

manufacturers, state diagrams served as a visual representation of the individual systems 

and inherent differences between each system could be identified easily. A state diagram 

can be drawn to list every unique state, along with all the tasks and subtasks required to 

remain in each state or transition to a different state. State diagrams thus may make for a 

unique visualization tool to help an individual with minimal knowledge about a system to 

quickly interpret and comprehend system capabilities. Although the current efforts used 

ACC as an exemplar, this process can be used for other ADAS features, including those that 

can be described as higher-level Automated Driving Systems. Future work could further 

explore the efficacy of using state diagrams as a meaningful and concise technique to 

describe complex systems for a wide audience. This has broad implications for applications 

in driver training and the design and content of user manuals, as well as for the design of 

these systems (including HMI) themselves.  

The main impetus for the error identification framework was for the application in 

identifying errors during drivers’ operation of various driver support features such as ACC. 

This structured approach towards error identification can form a foundational basis for 

examining the deeper underlying mechanisms or factors for the commission of such errors. 

Identifying potential errors associated with various operations (and system goals) can 

inform the fundamental design of the systems and controls and expectancies for the driver. 

This is particularly important as levels of vehicle automation change to systems that may 

require even lower engagement from the drivers, thus opening the door for many more 

types and categories of errors and increasing occasions for and probabilities of errors being 

committed.  

This framework, and the identification of error types, also has an important application in 

the underlying objective of this research—to better understand and characterize drivers’ 

mental models of advanced vehicle technologies. This approach provides a structure for 

empirical evaluation of these errors and their commission as an approach of measuring or 

classifying operators’ mental models, or their level of accuracy and completeness regarding 

their knowledge of a system’s capabilities and limitations. Mental models of a driver are 

currently measured using survey instruments designed to probe drivers’ understanding and 

knowledge of capabilities. Assessing mental models by interpreting driver errors allows for 

novel methods to gauge mental models, possibly in real-time under experimental 

conditions. It is possible to further examine various systems from a human operator 

response viewpoint and use other frameworks such as Operator Function Modeling (Lee & 

Sanquist, 2000) or System-Theoretic Process Analysis (STPA; Leveson, 2012).  

Another important application of this framework is in the domain of user training. 

Outcomes from an error identification analysis provides important content for training, i.e., 

familiarizing users with system capabilities, and testing for accuracy of drivers’ 

understanding and knowledge of such systems. There is a growing recognition of the role of 

training and education in the safe and effective use of advanced vehicle technologies 

(Pradhan et al., 2019). This issue becomes relevant for licensing authorities, 

manufacturers, dealerships, and driver education professionals. Identifying potential 
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operator errors during ADAS use, as well identifying underlying system limitations could 

help guide and focus training or educational approaches aimed at reducing or preventing 

such errors. The framework can further be leveraged to predict operator errors during the 

design of such systems. Operators rely on heuristics to process information and to make 

decisions. The proposed framework helps examine how various design features can elicit 

user errors. From a design perspective, this allows for a human-centered design approach. 

Errors can be mitigated by simplifying the formation of accurate mental models, and 

importantly, by allowing for the generation of effective heuristics that allow for the far 

transfer of one’s understanding of an ADAS feature across manufacturers. 

Related to the above discussion on training and driver education is the outcome of the 

analysis that was conducted on the reporting of system limitations in user manuals. By 

reviewing owner’s manuals for different ACC systems across different manufacturers, it 

was possible to better understand the limitations of ACC systems and classify them into 

categories. A study of how these limitations were presented to users through the owners’ 

manuals showed that the reporting of limitations is not consistent across manufacturers, 

with some owners’ manual having a very comprehensive and detailed listing of limitations, 

as contrasted with others that had fewer limitations listed. It is important to note again 

that this variability does not necessarily indicate that a system is more or less robust and 

could simply be a function of the completeness or depth of a particular model’s owner’s 

manual.  

These findings become especially critical when viewed in the context of recent research that 

indicates the vital role of how limitations are reported in owner’s manuals (cf. Singer & 

Jenness, 2020). In their research, Singer and Jenness (2020) found that branding or 

reporting approaches had an impact on drivers’ confidence in vehicle capabilities and 

therefore potentially on how drivers rely on or use the technologies, with an approach that 

emphasized limitations (over capabilities) potentially leading to less inflated expectancies 

regarding what systems can do and what situations they can handle. Their findings further 

underscore the importance of this current work on studying reported limitations, validating 

the importance of familiarizing users with all system limitations to ensure correct usage 

and prevent risk conditions while using ACC. 

From a more practical perspective, this does raise questions about efficient ways to actually 

present drivers with information about system limitations and capabilities. A pragmatic 

and parsimonious approach may be to present drivers with a few examples of failure 

scenarios or malfunctioning instances and expect that this information may suffice for the 

drivers to extrapolate and apply towards unknown safety-critical situations. One approach 

towards this could constitute the use of “Quick Start Guides” or more concise publications 

that provide more focused information about these systems, but also refer to the owner’s 

manual for more comprehensive information. An alternate to this approach could entail 

presenting the user with as much information about system limitations as possible, a 

strategy that may also be conducive for legal liability issues. A concern of course is that 

these may end up overloading the driver with too much information resulting in mode 

confusion or information slips. Also, worth noting that oftentimes the drivers tend to read 

owner’s manuals immediately after purchasing their vehicles, and hence overloading a 

naïve driver may result in creating an incomplete or inappropriate initial mental model. 

Future studies could focus on answering these questions by finding optimal ways to 

transfer system limitation-based information to drivers (particularly new users). 
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From a broader perspective, the findings from this secondary question contributes to the 

evidence about how system-related information about complex driver assistance systems 

may have an impact on mental models and driving safety. Our primary research goal has 

been to understand how such complex systems can be described and used to identify or 

predict user errors. Users’ operation of these systems and commission of any errors are 

driven by their mental models of these systems (Beggiato & Krems, 2015), and it is 

important to be able to gauge how accurate or complete a user’s mental model may be. 

However, it is also important to understand how these mental models may be formed and 

how they may evolve over time given initial knowledge seeding, exposure to the 

technologies, and any experiences with system limitations. Of these, the former has been 

shown to be important in how drivers develop their expectations of these systems (AAA, 

2019; Abraham et al., 2017; Nees, 2018). Initial knowledge seeding can be greatly 

influenced by vehicle owner’s manuals or from similar manufacturer material. How this 

knowledge is reported has an impact on drivers’ expectation, and by extension shapes their 

mental models of these systems. In addition to reporting approaches, the content of the 

information seems similarly critical. Along these lines, the outcomes of the secondary 

questions show inconsistency in reporting of system limitations, potentially affecting 

drivers’ expectations and use of these systems, and their impact on driving safety. Future 

work could expand the analyses to include more manufacturers and a broader range of 

ADAS types. Experimental evaluation of the impact of inconsistencies in reporting system 

limitations could be carried out (e.g., see Singer & Jenness, 2020) leading to 

recommendations and guides for best practices in reporting of system limitations and 

capabilities.  

Conclusions 

This research was undertaken to examine the role of driver errors in helping characterize 

their mental models of a complex vehicle technology. The research aimed to describe 

complex systems from a human operator perspective, and to lay out a structured framework 

using task analysis and error identification methods to identify and categorize potential 

driver errors.  

Complex advanced vehicle systems were represented using diagrams that visually 

represented these systems as unique states and transitions between states, using standard 

notation for state diagrams. These diagrams were used as the basis for task analyses that 

were comprised of identifying and listing operator-related inputs or actions that were 

relevant to state changes, i.e., undertaking of system function tasks. A structured process 

was then proposed for identifying operator-initiated errors for each level of operator inputs 

and classifying these errors into error types based underlying mechanisms based on an 

error taxonomy. 

This research also involved an in-depth examination of the reported limitations of ACC 

systems in manufacturer prepared materials (owner’s manuals) in order to understand 

variability between manufacturers in consistency of such reporting. It was found that there 

was considerable variability between manufacturers in the reporting of ACC limitations, 

although this may not be indicative of the actual capabilities or robustness of said systems.  
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This report discusses the implications of this research in relation to the broad underlying 

goals of understanding drivers’ mental models in the context of driver safety, and how the 

outcomes from this research can be used to inform or catalyze future work to better 

understand how to potentially measure drivers’ mental models, how to better educate or 

train drivers regarding systems capabilities and limitations, and the implications for driver 

safety and the benefits of advanced vehicle technologies. 
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