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Foreword 

Emerging vehicle technologies have the potential to make driving not only more 
comfortable but also safer. Many motor vehicle crashes result from mistakes made by 
drivers. Advanced driver assistance systems (ADAS), common in today’s new vehicles, 
have the ability to warn the driver or even intervene automatically in many situations to 
help the driver avoid a crash. These technologies have a clear role to play in our efforts 
to minimize vehicle crashes and save lives on our roads. However, it is important to have 
realistic expectations regarding the magnitudes of the safety benefits offered by 
technology, as well as how soon those benefits will be seen. 

This report presents a methodology to estimate safety benefits of ADAS and describes 
potential reductions in motor vehicle crashes, injuries, and deaths that ADAS and partial 
vehicle automation technologies may prevent in the future. This study also examined 
many factors that will influence how large those benefits will be and how quickly they 
will materialize, as well as the continued need to invest in a comprehensive array of 
traffic safety measures. This report should be of interest to researchers, transportation 
officials, practitioners such as automobile manufacturers, as well as other traffic safety 
stakeholders. 

 
 
         C. Y. David Yang, Ph.D. 
 
        President and Executive Director 
        AAA Foundation for Traffic Safety 
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Executive Summary 

Background and Objective 

Vehicle technology advancements are a crucial piece of the Safe System Approach, with 
the potential to contribute to significant transportation safety gains over the next several 
decades. Advanced driver assistance systems (ADAS) technologies represent a range of 
advanced vehicle functions that increase driver comfort by automating parts of the 
driving task under certain conditions, as well as increase safety by warning drivers of 
dangerous situations and braking or steering automatically to prevent or mitigate 
collisions. ADAS technologies have become increasingly popular in vehicles over the last 
several years, yet there is substantial uncertainty in the likely magnitudes of their safety 
benefits, as well as the rate at which safety benefits will be realized.  

The objective of this work was to estimate how many motor vehicle crashes, injuries, and 
deaths ADAS technologies are likely to prevent over the next 30 years, taking into 
account the many complex and interconnected factors affecting the availability, 
effectiveness, uptake, and use of current as well as future ADAS technologies.  

Methods 

This study involved four key steps: (a) defining the combinations of ADAS technologies 
likely to be available on vehicles during the study period; (b) estimating the probabilities 
that vehicles equipped with specific ADAS technologies would avoid various types of 
crashes; (c) modelling broader system dynamics affecting ADAS technology adoption, 
diffusion, and safety performance over time; and (d) using the results of the preceding 
steps to estimate the numbers of crashes, injuries, and deaths that will be avoided due to 
ADAS technologies each year through 2050.  

First, the research team defined specific combinations of technologies, informed by 
existing literature and market projections, broadly representative of the combinations of 
ADAS technologies expected to be available on vehicles over the time horizon of the 
study: (a) collision warning systems only; (b) collision warning systems plus adaptive 
cruise control; (c) collision intervention systems (plus warning systems and adaptive 
cruise control); and (d) dynamic driving assistance (plus collision intervention, warning 
systems, and adaptive cruise control); as well as vehicles with no ADAS technologies. The 
study did not examine higher levels of automation, which are not currently available to 
consumers in the U.S. market, as there were no data to inform assumptions about their 
uptake or performance. 
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The team then created a detailed matrix to categorize types of crashes that these 
technologies did versus did not have the potential to prevent. For crashes deemed 
potentially preventable, the probability of successful crash avoidance was estimated for 
vehicles equipped with the above-described combinations of technologies, taking into 
account the type of crash, the impact of contextual factors present in crashes that might 
influence system performance (e.g., weather, lighting conditions), as well as the 
probability that the relevant technology would be in use at the time. 

Next, the team developed a causal loop diagram to depict key variables and causal 
relationships hypothesized to influence technology availability, uptake, use, and 
performance over time in relation to many interrelated factors hypothesized to influence 
them. This theoretical model was converted into a simulation model using a system 
dynamics modeling approach.  

This model was then used to simulate potential future crashes annually through 2050 
based on data from individual crashes that occurred in years 2017–2019 and an assumed 
1% annual growth rate of total vehicle travel. For each simulated future crash, the 
probability that ADAS technologies on one or more of the vehicles involved would avoid 
the crash was estimated based on the probability that that each vehicle in the crash 
would be equipped with the relevant technology, the probability that the technology 
would be in use at the time, and the probability that it would successfully avoid the 
crash, given the capability and maturity of the technology as well as the circumstances of 
the crash. Results were aggregated over all simulated crashes in each year to estimate 
the numbers of crashes, injuries, and deaths that ADAS technologies would be expected 
to prevent, annually, as well as cumulatively over the 30-year period 2021–2050. Three 
sets of results are provided throughout the report: results based on assumptions that the 
research team regarded as most probable, as well as results based on alternative 
scenarios in which uptake and use of ADAS technologies were higher or lower than 
assumed in the main analysis. 

Results and Discussion 

Using the above-described simulation methodology, the current study estimates that 
ADAS technologies will prevent approximately 25% of all crashes, 24% of nonfatal 
injuries, and 33% of fatalities that would otherwise occur in 2050 if ADAS availability, 
uptake, effectiveness, and use were to remain at their 2017–2019 levels. Cumulatively, 
these technologies are anticipated to prevent approximately 37 million crashes, 14 
million injuries, and 249,000 fatalities in the 30 years from 2021 through 2050, which 
represent approximately 16% of crashes and injuries, and 22% of fatalities predicted to 
occur on U.S. roads over the same 30-year period without these technologies. 
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Variation in ADAS technology uptake and use, however, could contribute to different 
safety outcomes. For example, in a scenario in which ADAS technology uptake and use 
are higher than expected, up to 38% of fatalities and 27%–28% of total crashes and 
nonfatal injuries in 2050 might be prevented by ADAS. In a scenario where uptake and 
use were lower than expected, ADAS could prevent as few as 22% of fatalities and 16%–
17% of total crashes and injuries in 2050. Even in the more pessimistic scenario, 
however, ADAS technologies are predicted to prevent a total of nearly 8.7 million injuries 
and save more than 150,000 lives cumulatively by 2050. Thus, it is clear that driver 
support features already available today, when deployed at scale, have the potential to 
contribute to major improvements in road safety. 

Although the results of the current study suggest that increases in the availability, 
uptake, use, and effectiveness of ADAS technologies over the next 30 years will 
contribute to substantial reductions in motor vehicle crashes, injuries, and deaths, there 
are still many scenarios and contexts in which ADAS technologies may not be able to 
intervene effectively or at all. Even in the optimistic scenario—in which ADAS is 
predicted to prevent more than 16.8 million injuries and save nearly 300,000 lives 
cumulatively in years 2021–2050, more than 73 million people would still be injured and 
nearly 850,000 would still die in crashes over the same 30-year period. Thus, while ADAS 
technologies have the potential to prevent large numbers of injuries and save many 
lives, there remains a clear need to continue to invest in other proven traffic safety 
measures in addition to vehicle technology. 

The model and its results should be interpreted as a tool and test bed to consider the 
complex dynamics that may influence safety outcomes, and several limitations should be 
noted. The study does not account for the potential safety impacts of more advanced 
crash avoidance technologies or higher levels of vehicle automation that are not yet 
available on the U.S. market but that may emerge in the future. The study also does not 
account for other vehicle technologies besides ADAS (e.g., technology to limit speed, 
prevent impaired driving, or protect occupants in the event of a crash), other traffic 
safety policies (e.g., changes to road design or laws), other factors beyond transportation 
safety policy that may influence the uptake of vehicles equipped with ADAS (e.g., vehicle 
electrification policy, cybersecurity concerns), or factors that may influence traffic safety 
more broadly (e.g., changes in land use or commuting patterns, the COVID-19 pandemic). 
The numbers of deaths and injuries potentially prevented by ADAS were estimated by 
totaling the numbers of injuries and deaths in crashes that ADAS was predicted to 
prevent; actual numbers of deaths and injuries prevented could be somewhat greater if 
ADAS helps to reduce the impact speed of some crashes that still occur. Additionally, 
further research is needed to estimate safety benefits of ADAS disaggregated by 
demographic group and geography to examine potential inequities in access to new 
technologies and their anticipated safety benefits.  
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In conclusion, this research makes an important contribution to the field by estimating 
how many crashes, injuries, and deaths ADAS technologies are expected to prevent in the 
coming years, taking into account many interconnected factors and sources of 
uncertainty that are expected to influence the safety benefits of ADAS and the rate at 
which those benefits accrue. Overall, results corroborate previous research findings that 
while driver assistance and vehicle automation technologies will provide substantial 
safety benefits in the coming years, they are unlikely to eliminate all or most traffic 
fatalities and injuries within the next few decades. Thus, consistent with the Safe System 
Approach, which calls for a layered, redundant approach to safety, there remains a clear 
need to continue to invest in a wide array of proven traffic safety measures, including 
but not limited to vehicle technology. 
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Introduction  

As the United States adopts a Safe System Approach to transportation safety, 
stakeholders are working to accelerate improvements across key transportation system 
domains (e.g., roadway design, speed management, vehicle safety innovation). Vehicle 
technology advancements are a crucial piece of the Safe System Approach, with the 
potential to contribute to significant transportation safety gains over the next few 
decades. In fact, the U.S. Department of Transportation, the U.S. Safe System consortium, 
the National Safety Council, and numerous other organizations and agencies have called 
for expanded and accelerated availability of advanced driver assistance systems (ADAS) 
in all new vehicles as an essential component to advancing Safe System implementation 
(JHCIRP, 2021; NSC, 2022; U.S. DOT, 2022). 

ADAS technologies represent a range of advanced vehicle functions that can serve to 
notably improve driving safety through driver alerts and warnings, as well as crash 
avoidance and mitigation maneuvers. They can also serve to increase driver comfort by 
assisting with common driving and parking tasks. ADAS technologies have become 
increasingly popular in vehicles over the last several years. Current estimates indicate 
that nearly all new vehicles available in the United States have at least one ADAS 
technology, with the most common technologies including warning systems (e.g., blind 
spot detection (BSD)) (AAA, 2019; SBD Automotive, 2018). More recently, active ADAS 
crash avoidance systems have become increasingly popular and prevalent as well (e.g., 
automatic emergency braking (AEB)) (AAA, 2019; SBD Automotive, 2018). The National 
Highway Traffic Safety Administration (NHTSA) provides annual updates on progress 
made by 20 automakers regarding the increased adoption of low-speed AEB, for example 
(NHTSA, 2020). 

A growing body of literature indicates that ADAS technologies have substantial safety 
benefits. For example, research from the Insurance Institute for Highway Safety (IIHS) 
and Highway Loss Data Institute (HLDI), utilizing police-reported crash data and 
insurance claims, estimated that forward collision warning (FCW) may reduce front-to-
rear crashes by 27% and front-to-rear crashes with injuries by as much as 20%; benefits 
more than doubled when AEB was used in conjunction with FCW (Cicchino, 2017; HLDI, 
2020; IIHS, 2020). Finally, other prevalent ADAS warning technologies, such as lane 
departure warning (LDW) systems and BSD have also demonstrated notable benefits, 
with research indicating 20%–25% reductions in relevant injury crashes (Cicchino, 
2018a, 2018b; HLDI, 2020; IIHS, 2020). 

While early research indicates promising safety benefits from ADAS technologies, there 
is substantial uncertainly in how quickly, and the extent to which, widespread safety 
benefits might be realized across the United States. ADAS diffusion into the U.S. vehicle 
fleet is affected by several factors, including price, technological maturity, and how 
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quickly technologies become standard in vehicles. Several agencies, including the 
National Transportation Safety Board (NTSB), have called for increased adoption of 
ADAS technologies as standard packages on vehicles; however, there are several industry 
and policy dynamics that affect these processes (NTSB, 2022; VSI Labs, 2020). Even with 
increased ADAS diffusion, there are several causal factors that affect crash occurrence, 
and therefore, several factors that determine the extent of ADAS safety benefits. For 
example, crashes are often the result of factors operating across several domains, 
including factors in the built environment (e.g., roadway design, land use), at the vehicle 
level (e.g., technology, functionality), related to a person’s decision making (e.g., vehicle 
maneuvers, decision to turn on/off ADAS technology), and associated with 
environmental conditions (e.g., icy conditions, poor lighting). ADAS technologies will help 
reduce crashes and improve safety only to the extent that they help to address or 
overcome one or more critical links in a crash’s causal chain, and perform in the 
conditions in which crashes are likely to occur. Even under optimal deployment of 
redundant ADAS technologies, the design domains in which sensors will reduce crashes 
are limited. While many new vehicles sold today offer AEB with pedestrian detection, 
most pedestrian fatalities occur on relatively high-speed roads and in darkness, 
conditions in which sensors used in current generation systems do not perform well 
(AAA, 2021; Cicchino, 2022; Combs et al., 2019; NCSA, 2022). Additionally, there are 
several prevalent crash scenarios in which current ADAS technologies do not perform 
well. For example, straight-crossing-path (“T-bone”) crashes and crashes involving a 
vehicle turning across the path of another vehicle represent nearly 40% of fatalities in 
two-vehicle crashes. While drivers might expect technologies such as automatic 
emergency braking (AEB) systems to aid in these scenarios, recent research indicates 
that many systems often fail to avoid or even mitigate such crashes (AAA, 2022). Given 
the overall complexity in diffusion rates, crash causal chains, and technological 
capability and maturity, there is considerable uncertainty regarding the potential safety 
gains that might be realized by ADAS technologies over the next several years in the 
United States.  

The overall objective of the current study is to estimate the number of motor vehicle 
crashes, injuries, and deaths that existing ADAS technologies are likely to prevent over 
the next 30 years, accounting for the complex and interconnected factors affecting the 
availability, uptake, use, and performance of the technologies. Results are provided 
across a range of scenarios to demonstrate potential impacts of assumptions on safety 
outcomes.  

Methods 

The purpose of this study was to estimate the numbers of deaths, nonfatal injuries, and 
crashes on U.S. roads that would potentially be prevented by ADAS and partial vehicle 
automation technology each year through 2050 given realistic assumptions regarding 
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changes over time in ADAS technology adoption, use, and effectiveness, as well as in the 
total amount of U.S. vehicle travel. The study approach involved four major sub-steps, 
listed below and outlined in Figure 1.  

 
Figure 1. Key project tasks and steps. 

1. Defining combinations of ADAS technologies (“packages”) available on 
vehicles during the study period. 

2. Estimating crash avoidance probabilities for ADAS, by technology package and 
crash type 

3. Modelling dynamics affecting the diffusion, use, and effectiveness of ADAS. 
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4. Estimating future numbers of crashes, injuries, and deaths potentially avoided 
by ADAS. 

The following sections describe the methodology and information sources used in each 
of these specific steps. 

Step 1: Defining combinations of ADAS technologies (“packages”) on vehicles 

This task involved defining and classifying the various combinations of ADAS 
technologies likely to be available on vehicles in the United States during the study 
period. Within this task, the team made several decisions and assumptions about the 
technologies and the types of vehicles on which they would be installed. Core 
assumptions and decisions are outlined below. 

Scoping Decisions 

The research team made several overarching design, data, and analytic decisions from 
the outset to shape this work. A time horizon of 30 years was selected, such that the 
model estimates safety outcomes each year through 2050, based on crash data from 
2017–2019. The study considered ADAS and partial vehicle automation technologies up to 
and including SAE Level 2, i.e., driver support features that provide simultaneous 
steering and braking/acceleration support to the driver. Technologies considered in the 
current study are shown in Table 1. 

Table 1. ADAS technologies considered in this study. Definitions from AAA (2019). 
ADAS technology Definition 

Blind spot warning Detects vehicles to rear in adjacent lanes while driving and alerts driver 
to their presence. 

Pedestrian detection Detects pedestrians in front of vehicles and alerts drivers to their 
presence. 

Lane departure warning Monitors vehicle's position within driving lane and alerts driver as the 
vehicle approaches or crosses lane markers. 

Forward collision warning Detects impending collision while traveling forward and alerts driver. 

Adaptive cruise control 
Controls acceleration and/or braking to maintain a prescribed distance 
between it and a vehicle in front. May be able to come to a stop and 
continue. 

Automatic emergency 
steering 

Detects potential collision and automatically controls steering to avoid or 
lessen the severity of impact. 

Forward automatic 
emergency braking 

Detects potential collisions while traveling forward and automatically 
applies brakes to avoid or lessen the severity of impact. 

Lane keeping assistance Controls steering to maintain vehicle within driving lane. May prevent 
vehicle from departing lane or continually center vehicle. 

Dynamic driving assistance 
Controls vehicle acceleration, braking, and steering. SAE standard 
definition of Level 2 driving automation systems outlines this 
functionality. 
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The current study estimated the future safety benefits of installing these technologies on 
automobiles, pickup trucks, minivans, vans, or sport utility vehicles (hereafter 
collectively “passenger vehicles”) and large trucks. Automation on other types of vehicles 
(e.g., motorcycles, off-road vehicles, micro-mobility devices) was not considered. Higher 
levels of automation were not considered due to lack of data on their safety 
performance. Technologies designed to assist with vehicle parking were not considered 
due to lack of data regarding the incidence of crashes involving parking as most such 
crashes likely occur on private property (e.g., in parking lots) and thus are not included 
in most state and national motor vehicle crash databases. Safety technologies unrelated 
to vehicle automation (e.g., night vision systems, alcohol ignition interlocks, technology 
to improve vehicle crashworthiness) were not considered as they were outside the scope 
of the study. Additional details on specific model inclusion and exclusion criteria are 
further discussed subsequently in Methods subsection 3 and summarized in Table 2. 

Defining combinations of ADAS technologies on vehicles 

The research team developed a set of technology “packages” representing different 
combinations of ADAS and partial driving automation technologies expected to be 
available on vehicles in the United States during the study period. The packages were 
developed to detail technologies in vehicles at a more granular level than SAE level (SAE, 
2021), while also recognizing that disentangling each individual ADAS technology was 
beyond the scope of the study. Therefore, the vehicle categories represented a 
compromise between delineating potential safety impacts of specific technologies and 
managing model complexity, recognizing that many of these technologies co-occur in the 
same vehicles. The vehicle technology packages examined in the current study were 
defined as follows: 

• Base Package: No ADAS or automation 
• Package A: Warning systems (blind spot warning, lane departure warning, 

forward collision warning, and pedestrian detection systems)  
• Package B: Adds adaptive cruise control to Package A 
• Package C: Adds automatic emergency braking, emergency steering assistance, 

and lane keeping assistance to Package B 
• Package D: Adds dynamic driving assistance (i.e., simultaneous operation of 

adaptive cruise control and lane centering assistance) to Package C  

Note that as defined here, each higher technology package includes all of the systems 
present in all lower packages. 

Step 2: Estimating crash avoidance probabilities for ADAS 

In this task, the research team first established decision rules regarding what general 
types of crashes could versus could not potentially be prevented by each ADAS 
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technology. For crashes deemed potentially preventable, the research team then 
estimated the probability that the applicable technology would prevent the crash. These 
decision rules (preventable vs. not preventable, and probability of prevention among the 
preventable) were then mapped onto specific crash types, pre-crash maneuvers, and 
environmental factors recorded in national crash databases used to quantify the baseline 
incidence and estimate the likely future incidence of such crashes. 

Data on motor vehicle traffic fatalities examined in the current study were from NHTSA’s 
Fatality Analysis Reporting System (FARS) database, which is a census of all crashes that 
occur on public roads in the United States, involve a motor vehicle in transport, and 
result in a death within 30 days of the crash (NHTSA, 2022a). Data on nonfatal injuries 
and total crashes were from the NHTSA’s Crash Report Sampling System (CRSS) database, 
which comprises a geographically stratified sample of police-reported crashes, which are 
weighted to produce statistical estimates regarding all police-reported crashes 
nationwide (NHTSA, 2022b). Together, these data systems provided a holistic 
understanding of the characteristics, associated factors, and outcomes of crashes across 
the United States.  

Using these data sources, the research team extracted key crash-level (e.g., crash 
conditions such as road surface conditions, lighting, weather), vehicle-level (e.g., number 
of vehicles involved, types of vehicles involved, pre-crash maneuver of vehicles, crash 
geometry from the perspective of each vehicle), and person-level (e.g., severity of 
injuries) characteristics from respective 2017–2019 FARS and CRSS data files.  

Decision rules regarding whether each general type of crash identified in the crash 
databases could potentially be prevented by ADAS, and if so, the probability of successful 
prevention given the specifics of the crash, were informed by literature reviews and 
expert opinion. Further details on specific decision rules are included below. 

Identifying potentially preventable crashes 

To identify crashes that each ADAS technology had some possibility of preventing, the 
team examined variables in the FARS and CRSS data systems that described pre-crash 
critical events (variable name: p_crash2) and crash type/geometry (variable name: 
acc_type). The team then assessed whether each specific ADAS technology included in 
the study had any potential to prevent each general type of crash as defined by 
combination of pre-crash critical event and crash type/geometry. Note that the purpose 
of this step was simply to distinguish between crashes that the ADAS considered in the 
current study had any possibility versus no possibility of preventing; the probability of 
prevention among those deemed possibly preventable is assessed in a subsequent step.  

Decisions regarding whether a given technology had any potential to prevent a 
particular type of crash were made independently by two members of the research team 
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based on literature reviews and expert opinion. Disagreements were resolved through 
discussions with the larger research team. The following broad categories of crashes 
were deemed not preventable by ADAS and thus were not examined in further detail: (a) 
crashes resulting from vehicle malfunctions (e.g., tire blow out, stalled engine), (b) 
crashes involving pre-crash loss of control/traction, (c) wrong-way crashes, (d) straight-
crossing-path (“T-bone”) collisions, (e) turn-across-path collisions (AAA, 2022), (f) crashes 
occurring on non-trafficways or ramps, (g) crashes involving vehicles entering or leaving 
driveways, and (h) crashes involving objects (e.g., debris) on the roadway.  

The following summarizes the research team’s determinations regarding the potential of 
each technology included in the study to prevent various general types of crashes. 
Appendix Table A1 shows the specific combinations of crash type and pre-crash 
maneuvers that the team determined ADAS had some possibility of preventing (and thus 
carried forward to the next step of the analysis) versus those deemed not preventable. 

Forward collision warning and automatic emergency braking systems were assumed to 
help prevent crashes in which another vehicle or entity ahead was stopped or rapidly 
decelerating just prior to the crash and in situations where the ultimate crash type was a 
forward impact, including but not limited to rear-end collisions (IIHS, 2022; Tan et.al; 
2020). While the probability of successful prevention by FCW versus AEB differed (as 
discussed in next section), they were assumed to have some potential to prevent the 
same general types of crashes.  

Pedestrian detection systems were determined to be relevant in crashes that involved a 
pedestrian approaching or in the roadway, but not in all crash-type scenarios. For 
example, if a vehicle was turning, it was assumed the detection system would not have 
sufficient time to detect the pedestrian and avoid the collision, as such systems have 
been shown to perform poorly such scenarios (Cicchino, 2022; AAA, 2019). 

Lane departure warning and lane keeping assistance systems were assumed to have the 
potential to prevent crashes in which a vehicle traveled over its lane boundaries or 
departed the road prior to the occurrence of the crash. These include simple road-
departure crashes (often resulting in vehicle rollovers or collisions with fixed objects) as 
well as other types of crashes immediately preceded by unintentional lane departure 
(e.g., a forward collision with another vehicle in an adjacent lane). These technologies, 
however, were assumed not to prevent crashes occurring due to vehicle turning 
movements, nor crashes resulting from evasive actions taken by the driver in attempt to 
avoid a collision with a vehicle or pedestrian on the roadway. 

Blind spot detection systems are designed to detect other vehicles immediately beside the 
vehicle and should assist in avoiding collisions related to side or lateral maneuvers (most 
commonly sideswipe collisions). Blind spot detection was assumed unable to contribute 
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meaningfully to the prevention of other crash types such as forward impacts or 
unintentional lane departures.  

Automatic emergency steering was assumed to have some potential to prevent many road 
departure, forward impact, and rear-end collisions by helping the driver to steer or 
redirect the vehicle to avoid an imminent collision. However, similar to other 
technologies, it was assumed that the technology would not intervene during turning 
maneuvers. It was also assumed to have limited ability to intervene in sideswipe 
collisions.  

Adaptive cruise control is designed to help keep a vehicle at a safe following distance 
from the vehicle in front of it, this technology was assumed to help to prevent front-to-
rear crashes in certain scenarios.  

Dynamic driving assistance is designed to keep a vehicle centered in its lane and 
maintain speed and following distance. It was assumed that the technology would be 
able to prevent many of the crashes involving road departures, forward impact, rear-end 
collisions with another vehicle, and sideswipe collisions. However, it was assumed that 
the technology would not be able to prevent crashes that involved turning movements 
based on research indicating limited efficacy for ADAS technologies in turning 
maneuvers (Yue et al., 2020).  

Estimating probability of avoidance for individual crashes  

For crashes determined to be potentially preventable in previous step based on their 
crash type and pre-crash maneuvers, the research team then estimated the probability 
that a given technology would avoid the crash. (Note that for simplicity, the approach 
only considers crash avoidance. It does not consider whether ADAS technology packages 
may reduce injury severity in the event a crash is not prevented, for example by 
reducing impact speed.) The probability that a crash (i) would be avoided (Pi) was 
computed as the product of the following: 

i. The baseline effectiveness of the technology for a given crash type, expressed 
as a probability of crash avoidance (Ai) 

ii. A multiplier representing any reduction in effectiveness due to the particular 
hazards present in the crash (e.g., weather, lighting, etc.) (Hi) 

iii. The probability that the technology would be activated and in use at any given 
moment, given that the vehicle was equipped with the technology (Ui) 

The baseline effectiveness estimates, multipliers for reduction in effectiveness due to 
hazards present, and assumed probabilities of system activation/use are provided in 
Table A2 in Appendix A. Using the values from Table A2, the probability that a given 
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technology package (j) in isolation would prevent a given crash i, given that the vehicle 
was equipped with the technology and that the technology was in use at the time, is thus: 

𝑃𝑃𝑖𝑖,𝑗𝑗|�𝐸𝐸𝑗𝑗 ∩ 𝑈𝑈𝑗𝑗� = 𝛿𝛿𝑖𝑖,𝑗𝑗𝐴𝐴𝑖𝑖,𝑗𝑗𝐻𝐻𝑗𝑗   (1) 

where δi,j =1 if crash i is a type of crash deemed potentially preventable by any of the 
ADAS included in technology package j (crash type marked “Y” in Table A1 in Appendix 
A) and 0 otherwise, and Ej is the probability that the relevant vehicle is equipped with 
technology package j. The probability that technology package j would avoid the crash 
given only that the vehicle is equipped with package j is thus:  

𝑃𝑃𝑖𝑖,𝑗𝑗|𝐸𝐸𝑗𝑗 = �𝑃𝑃𝑖𝑖,𝑗𝑗|𝐸𝐸𝑗𝑗 ∩ 𝑈𝑈𝑗𝑗�𝑈𝑈𝑗𝑗 = 𝛿𝛿𝑖𝑖,𝑗𝑗𝐴𝐴𝑖𝑖,𝑗𝑗𝐻𝐻𝑗𝑗𝑈𝑈𝑗𝑗  (2) 

When more than one hazard potentially reducing system effectiveness was present (e.g., 
if a crash occurred during a rainstorm and in darkness), the largest reduction in 
effectiveness associated with any of the individual conditions was used. (The research 
team also considered treating each condition as acting independently and multiplying 
the corresponding hazard reductions, but determined this would be inappropriate, as 
oftentimes multiple conditions impair the performance of the technology through 
similar or overlapping mechanisms. For example, darkness and precipitation both 
restrict cameras’ vision.) 

Given the prevalence of lane departure crashes (approximately one third of nonfatal and 
one half of fatal crashes) and literature showing high percentage of drivers that 
deactivate lane departure and lane keeping assistance technologies (Reagan & McCartt, 
2016), the research team disaggregated crashes according to whether they were lane-
departure or non-lane-departure crashes and by whether the lane keeping systems (lane 
departure warning or lane keeping assistance) included within any given technology 
package were assumed to be in use. The probability shown above in Equation 2 was thus 
decomposed into a weighted average of the probability of prevention given the lane 
keeping features of the system were active (denoted below in Equation 3 by subscript j+) 
and the probability of prevention given the lane-keeping features were inactive (denoted 
by subscript j–), calculated using the applicable values in Table A2 (i.e., for lane-
departure or non-lane-departure crashes, with lane keeping features active or inactive) 
for system effectiveness, probability of use, and reduction in effectiveness due to hazards 
present, and weighted by the probabilities of system use with the lane keeping features 
active versus inactive as shown below in Equation 3. 

𝑃𝑃𝑖𝑖,𝑗𝑗|𝐸𝐸𝑗𝑗 = 1
𝑈𝑈𝑗𝑗++𝑈𝑈𝑗𝑗–

��𝑃𝑃𝑖𝑖,𝑗𝑗+|𝐸𝐸𝑗𝑗 ∩ 𝑈𝑈𝑗𝑗+�𝑈𝑈𝑗𝑗+ + �𝑃𝑃𝑖𝑖,𝑗𝑗–|𝐸𝐸𝑗𝑗 ∩ 𝑈𝑈𝑗𝑗–�𝑈𝑈𝑗𝑗–�  (3) 

Note that because each higher ADAS package as defined in the current study includes all 
lower packages, the probability that each technology would be in use at any given time 
was determined using a “step-down” approach. For example, Package D comprises all 
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technologies considered in the current study up to and including dynamic driving 
assistance. If a vehicle was equipped with ADAS Package D, there is some probability 
(per Table A2) that dynamic driving assistance would be in use. However, when not in 
use, any of the technologies included in Package C could be in use, and their associated 
effectiveness and usage parameters would then apply. Thus, the probability that a vehicle 
equipped with Package A would avoid a crash is simply given by Equation 2, the 
probability that a vehicle equipped with Package B would avoid it is given by the sum of 
the probabilities that Package B would avoid the crash plus the probability that Package 
B systems were not in use and that Package A would avoid the crash, as shown below in 
Equation 4. 

𝑃𝑃𝑖𝑖|𝐸𝐸𝐵𝐵 = �𝑃𝑃𝑖𝑖,𝐵𝐵|𝐸𝐸𝐵𝐵� + �𝑃𝑃𝑖𝑖,𝐴𝐴|𝐸𝐸𝐴𝐴�𝑈𝑈𝐵𝐵���� = �𝑃𝑃𝑖𝑖,𝐵𝐵|𝐸𝐸𝐵𝐵� + (𝑃𝑃𝑖𝑖|𝐸𝐸𝐴𝐴)(1 −  𝑈𝑈𝐵𝐵)  (4) 

Similarly, Equations 5 and 6 show corresponding probabilities of crash avoidance for 
vehicles equipped with packages C and D, respectively. 

𝑃𝑃𝑖𝑖|𝐸𝐸𝐶𝐶 = �𝑃𝑃𝑖𝑖,𝐶𝐶|𝐸𝐸𝐶𝐶�+ (𝑃𝑃𝑖𝑖|𝐸𝐸𝐵𝐵)(1 −  𝑈𝑈𝐶𝐶)  (5) 

𝑃𝑃𝑖𝑖|𝐸𝐸𝐷𝐷 = �𝑃𝑃𝑖𝑖,𝐷𝐷|𝐸𝐸𝐷𝐷� + (𝑃𝑃𝑖𝑖|𝐸𝐸𝐶𝐶)(1 −  𝑈𝑈𝐷𝐷)  (6) 

For each parameter referenced in the equations above, Table A2 provides an initial value 
(i.e., the value for the base year, 2017) and a final value, representing the team’s 
assumptions of how effective the technology is likely to be by 2050, given improvement 
and maturation in the technology. Improvements/maturation over time between the 
starting year and ending year were modelled using an S-shaped curve, with values in 
intermediate years determined by simulation as described in the next section. 
Documentation in Appendix A summarizes the team’s rationale for each value. Given the 
scope of the types of technologies considered, various manufacturer-specific 
implementations of them, as well as the range of crash scenarios and unique 
circumstances present, exact technology effectiveness values for specific crash types 
were often unavailable in existing literature, thus the values used reflect the research 
team’s best judgment informed by existing literature where applicable as well as by 
expert opinion. Various sensitivity analyses described in the Uncertainty and Sensitivity 
Analyses section below were conducted to take into account the uncertainty around 
these parameter estimates. 

Step 3: Modelling dynamics affecting diffusion of ADAS 

The purpose of this step was to conceptualize the broader system dynamics affecting the 
adoption, diffusion, and safety performance of ADAS technology. To do this, the team 
used a system dynamics (SD) modeling approach to examine and account for the 
underlying complexity affecting ADAS diffusion trends. SD is an approach used to 
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analyze complex and dynamic systems. SD is particularly useful when there is a web of 
factors interacting and changing over time such that cause-and-effect relationships are 
particularly difficult to intuit or trace through several steps. SD helps to model 
complexity exhibited by non-linear trends (which are common in transportation safety 
outcomes); feedback behavior (i.e., closed chains of endogenous factors; see more on this 
below); delays between causes and effects (i.e., how quickly an action causes a reaction); 
and adaptiveness (Sterman, 2000). SD simulation models have been used to study ADAS 
and AV system deployment, electric vehicle infrastructure diffusion and readiness, and 
other specific road safety outcomes and vehicle technology uptake trends over time 
(Harrison et al., 2021; Keith et al., 2019; Nieuwenhuijsen et al., 2018; Puylaert et al., 2018; 
Rakoff et al., 2020; Stanford, 2015; Struben & Sterman, 2008).  

At the core of an SD approach is a mapping method called causal loop diagramming 
(Sterman, 2000). Causal loop diagramming depicts key variables believed to be most 
important for understanding specific outcomes over time, and the hypothesized causal 
relationships between them. Causal loop diagrams (CLDs) are generally created using the 
best available literature and data, as well expert input to supplement literature where 
gaps are encountered. These CLDs ultimately depict the theoretical underpinning and 
core causal structure that then shapes the development of simulation models. They also 
serve as living maps that can be updated over time as new research improves the 
collective understanding of the system and as stakeholders discuss and debate 
modifications to assumptions, additions to the model, or scenarios to examine. 

In the current study, the research team created a CLD to guide this work and inform 
simulation model development (Figure 2). This CLD depicts the research team’s best 
understanding of the most important and/or basic dynamics to consider when modeling 
ADAS diffusion within the overall project scoping decisions described previously. The 
development of this CLD was informed by literature reviews, discussions among the 
project staff, discussions with external experts, and reviews of previous ADAS- and AV-
related SD models. In particular, the previous work of Nieuwenhuijsen et al. (2018), with 
advancements by Harrison et al. (2021), provided the foundation for the CLD used in the 
current study. Those studies used SD simulation models to examine ADAS and AV 
diffusion into the vehicle fleet in the Netherlands under a variety of scenarios. Several 
feedback loops in the top third of Figure 2, related to technology maturity, industry 
experience, purchase price, sales, and attractiveness, were derived from those models. 
While the quantitative estimates attached to these dynamics differ between the United 
States versus European settings, it is expected that some of the underlying structure 
related to vehicle technology diffusion is similar. 
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Figure 2. Causal loop diagram of important interconnected mechanisms likely to impact ADAS 
diffusion and related safety trends. 

The CLD shown in Figure 2 includes key variables, causal relationships, and feedback 
processes hypothesized to be most important to understanding ADAS diffusion and 
related safety outcomes in the context of the current study. Factors in the diagram are 
connected via causal arrows with polarity. Casual arrows with a positive polarity (+) 
indicate that a change in the variable from which the arrow originates causes a change 
in the same direction in the destination variable (i.e., if the first variable increases, then 
the second also increases), assuming all else is equal. Causal arrows with a negative 
polarity (–) indicate that the two connected variables change in opposite directions. 
When causal connections form a closed chain of effects, over time, they create a 
balancing or reinforcing loop, depending on the combined polarities of the arrows in 
that loop. In transportation models, there are several key dynamics operating over time, 
including some that are balancing and others that are reinforcing. Simulation models 
help researchers to understand and test potential dynamics to learn what might be 
contributing to safety-related trends over time.  
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Balancing loops are critical dynamics in the system that tend to resist change and seek 
equilibrium. One example of a balancing loop is related to ADAS technology 
development and maturity (e.g., Loop “B1” in Figure 2). This balancing loop theorizes 
that as there is more research and development in a specific ADAS technology, the 
technology matures, and production efficiency increases. This has the effect of reducing 
the purchase price for that technology over time, which eventually reduces the funds 
and investments for further development of that specific technology. As technology 
peaks, iteration becomes less profitable, and investment in further development of that 
specific technology decreases in favor of investment in research and development of 
other new technologies (c.f., Sterman, 2000). This hypothesized feedback loop is a 
balancing feedback loop because increases in the initial variable (here, technology 
maturity) eventually cycle through a chain of connected factors over time to decrease (or 
slow) the rate of change in that initial variable, all else held equal.  

Reinforcing loops are critical to understanding the behavior of a complex system. In 
contrast to balancing loops, reinforcing loops generate exponential growth (or 
decline/decay) in the system. This system includes several potential reinforcing loops 
(see loops labeled with an “R” in Figure 2). For example, a “word of mouth” reinforcing 
loop is found in many complex health and safety systems (see Loop “R3” in Figure 2). In 
the context of the current study, this loop posits that as sales of vehicles with certain 
ADAS features increase, the general public’s familiarity with this type of technology 
increases (e.g., people become increasingly likely to know others who have the 
technology or have experienced it). This increases the attractiveness of and willingness 
to adopt the technology, causing sales of vehicles with those specific technology features 
to continue to increase, all else held equal. This type of loop causes quick growth in 
uptake (when observed in isolation).  

To further facilitate simulation model development and explicitly document decisions 
pertaining to the model boundary and scope related to ADAS diffusion and safety, Table 
2 lists factors included in the current study as well as factors acknowledged as 
potentially important but declared outside the scope of the current study. Within the list 
of included variables, the research team further divided these variables into variables 
assumed to be influenced or determined by other variables included in the model (i.e., 
endogenous variables) and variables that are inputs to the model but are modeled as 
unaffected by changes within the model (i.e., exogenous variables). Future research 
needs and model extensions beyond the scope of the current study are discussed in the 
Discussion section. 
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Table 2. Inclusion and exclusion decisions to further define model boundary and scope. 
Included Endogenous Factors Included Exogenous Factors Not Included in Current Study 
Sales, price, uptake, fleet size, 
trips of vehicles equipped with 
ADAS (and non-ADAS-equipped 
vehicles) 

Information (media, safety 
ratings, recalls, etc.) affecting 
perceptions related to ADAS 
safety 

SAE Level 3–5 systems (due to 
lack of real-world safety 
performance data and time 
horizon of study) 

Technology maturity, research 
and development, industry 
experience related to ADAS 
development  

Risk-taking behaviors (and/or 
cognitive overload) related to 
ADAS technology (e.g., sleeping 
at the wheel) and use of 
systems (e.g., turning off 
systems) 

Crashes solely involving buses, 
motorcycles, or other/unknown 
vehicles (due to lack of data on 
ADAS effectiveness in these 
vehicle types) 

Perceived and actual capability 
and safety of ADAS technology 

 
Crashes occurring off public 
roads (e.g., parking lots and 
other private property) due to 
lack of data on incidence 

Crashes involving vehicles 
equipped with ADAS (and 
without ADAS) and crashes 
avoided by these vehicles 

 

Potential supply chain 
disruptions and availability of 
materials/labor for ADAS 
technology and vehicle 
production 

Number and types of injuries 
occurring in crashes involving 
ADAS-equipped vehicles (and 
non-equipped vehicles) 

 

Exogenous factors affecting 
consumer vehicle purchasing 
decisions (e.g., economic 
shocks, developments related to 
electric vehicle technology and 
policy, etc.) 

  Vehicle cybersecurity risks 
 

As shown in Table 2, the model included core dynamics related to vehicle technology 
development, sales, fleet size, and consumer decisions to purchase vehicles with 
different ADAS technologies and features. These purchase decisions were modeled as 
driven by a variety of factors, including price, familiarity with the technology, perceived 
safety, and perceived capability of the vehicle. Price was modeled as affected by 
technology maturity and cumulative industry experience for manufacturing a given 
technology. Familiarity was modeled as driven by sales and the likelihood of knowing 
others who used the technology, hearing about it, or seeing it often in the media. Crashes 
occurring or avoided were modeled as influenced by the number of trips occurring, as 
well as the vehicle’s crash avoidance capability as influenced by the technology with 
which it was equipped, its baseline effectiveness, technological maturity, as well as the 
actions of the vehicle operator (e.g., response/non-response to alerts from warning 
systems, turning off/deactivating safety technology). Together, these dynamics interacted 
to generate model simulated crash trends over time. 

Using the CLD and explicit model boundary decisions, the research team converted the 
theoretical model into an SD simulation model using Any Logic software (AnyLogic, 2022; 
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Sterman, 2000). As mentioned, CLDs can serve as a theoretical underpinning and high-
level view of an SD model, which can then be quantitatively defined and simulated, 
linking the defined elements in the system. The research team used literature reviews to 
parameterize and inform the model assumptions. For example, starting values for the 
approximate number of vehicles with each technology package at model initiation (i.e., 
in 2017) were estimated by triangulating data from Consumer Reports (CR, 2021), 
Highway Data Loss Institute (HDLI, 2019, 2020), and automotive research companies 
(Hedges & Co, 2022). Similarly, estimates of the current average vehicle lifespan and 
vehicle miles traveled growth rates in the United States were obtained from S&P mobility 
data and Federal Highway Administration (FHWA) forecasts, respectively (S&P Global 
Mobility, 2022; FHWA, 2022a). Additionally, several estimates and assumptions regarding 
the speed of technological maturity (i.e., measure of technology reliability and 
performance modeled on a scale of 0%–100% with 100% representing perfect 
performance and reliability) and knowledge growth (i.e., measure of research and 
development output that is then used to drive technological maturity) were assumed to 
be roughly similar to prior modeling efforts in this space (Harrison et al., 2021; 
Nieuwenhuijsen et al., 2018). Sensitivity analyses (described subsequently) examined 
alternative scenarios where the uptake and use were both higher and lower than the 
value predicted by the SD simulation model.  

Step 4: Estimating future numbers of crashes, injuries, and deaths potentially 
avoided by ADAS 

In this step, the research team brought together the results of the previously described 
steps 1–3 to estimate the total number of crashes, injuries, and deaths potentially avoided 
by ADAS technologies each year through 2050. To do this, the research team built a 
model structure to simulate the number and characteristics of crashes, injuries, and 
deaths occurring in future years, and then estimated the probability that each simulated 
crash would be prevented by ADAS. 

Predicting future crashes, injuries, and deaths before accounting for avoidance by 
ADAS 

Future crashes were simulated using data from fatal crashes in NHTSA’s FARS data 
system and nonfatal crashes from NHTSA’s CRSS. Because CRSS is a sample of all police-
reported crashes each year in the United States, statistical weights in CRSS were used to 
determine the number of crashes in the full population represented by each crash in the 
database. Fatal crashes in FARS were assigned a statistical weight of 1 because FARS 
includes a record of every fatal crash; fatal crashes in CRSS were excluded to avoid 
double-counting. All crashes that involved at least one passenger vehicle or large truck 
that was on a trafficway at the time of the critical event that led to the occurrence of the 
crash were included, with the exception that crashes involving more than 4 vehicles 
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(<1% of all crashes) were excluded due to the difficulty in determining the roles of the 
many vehicles involved and thus the ability of technology on any particular vehicle to 
prevent the crash.  

For simplicity, the model assumed that before accounting for crashes potentially 
prevented by ADAS, the future rate of crashes per mile driven would be similar to the 
rate in the base year. Thus, the number of crashes in each future year would be expected 
to be similar to the number in the base year plus any change proportional to the change 
in total amount of driving. The model assumed a 1% annual increase in total vehicle 
miles driven, similar to the FHWA’s forecast that vehicle miles of travel will increase by 
an annual average of 0.9% in years 2018–2048 (FHWA, 2020). Thus, the expected number 
of crashes in each future year was modeled as the average number in the base year plus 
the 1% annual increase due to increased driving mileage.  

To account for random variability in the crashes that occur as well as to represent the 
full range of potential crash characteristics as well as possible, the current study used an 
aggregate of FARS and CRSS data from 2017–2019 as the base year. The numbers of 
crashes, nonfatal injuries, and deaths in the base year are shown in Table 3. The number 
of crashes expected to occur in each future year was thus the average number in 2017–
2019 plus a 1% annual increase.  

Table 3. Number of crashes, nonfatal injuries, and deaths in base year used for simulations.  
Crashes Nonfatal Injuries Deaths 

2017 6,205,000 2,641,000 33,727 
2018 6,492,000 2,609,000 33,131 
2019 6,533,000 2,629,000 32,603 
Total 19,230,000 7,879,000 99,461 

Base Year 6,410,000 2,626,000 33,154 
Base year for study = annual average numbers of crashes, injuries, and deaths in years 2017–2019. Data are from 
NHTSA’s FARS and CRSS databases and include all crashes involving ≥1 passenger vehicle or large truck on a 
trafficway prior to critical event and ≤4 vehicles total. Statistics shown are weighted estimates from records of 
146,559 nonfatal crashes and 91,236 fatal crashes. 

The characteristics of crashes in each future year were predicted by sampling with 
replacement the corresponding number of crashes (i.e., the average in the base year plus 
1% annual increase) from among the entire pool of crash records from 2017–2019. 
Sampling was performed separately for each month to account for seasonal variation in 
the number, severity, characteristics, and environmental conditions of crashes (e.g., 
crashes in each future January were simulated by sampling from among all crashes that 
occurred in January 2017, January 2018, and January 2019.) 

Predicting the probability that ADAS would avoid each simulated future crash 

The probability that each future crash, simulated as described above, would be avoided 
by ADAS was estimated as a function of the probability that the vehicles involved in the 
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crash would be equipped with any given ADAS package, the probability that the ADAS 
package would be able to avoid the crash given details about the crash, and the 
probability that the relevant ADAS feature would be in use at the time (i.e., not turned off 
or deactivated). 

For each vehicle involved in a simulated crash, its probability of being equipped with a 
given ADAS package was estimated based on the year of the crash and the proportion of 
all vehicles predicted to be equipped with each ADAS package in that year (predicted as 
described in the Step 3). For each simulated crash, the model first assessed whether there 
was any possibility that the ADAS technologies on any of the involved vehicles could 
have avoided the crash, and if so, its probability of successful avoidance, as described 
previously in Step 2. The probability that a given vehicle would avoid a given future 
crash was thus computed as sum of the probabilities that a vehicle equipped with each 
respective technology package would avoid the crash (from equations 2, 4, 5, and 6) 
weighted by the probability that the vehicle was equipped with each respective 
technology package, as shown in Equation 7, below. 

𝑃𝑃𝑖𝑖 = ∑ �𝑃𝑃𝑖𝑖|𝐸𝐸𝑗𝑗�𝐸𝐸𝑗𝑗𝑗𝑗=𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷   (7) 

If a crash involved only one vehicle, the probability of avoiding the crash was based on 
that vehicle’s predicted probability of avoiding it. In crashes involving two vehicles, the 
crash was assumed to be prevented altogether if either of the vehicles was predicted to 
avoid it. In crashes involving three or four vehicles, the model assumed that each vehicle 
predicted to avoid the crash has a 50% probability of preventing the entire crash from 
occurring. (Note that fewer than 10% of all crashes involve more than two vehicles, and 
sensitivity analyses indicated that changes to assumptions regarding the prevention of 
crashes involving more than two vehicles had negligible impact on the overall results.) 

Finally, the prevention of each crash was assumed to prevent all of the deaths and 
nonfatal injuries that occurred in the original crash sampled from the FARS and CRSS 
base year data. For simplicity, the study did not attempt to estimate any potential 
additional reduction in injuries due to reductions in the severity of crashes still predicted 
to occur (e.g., due to reduced impact speed). 

In summary, the model estimated the probability that each simulated future crash, and 
thus any deaths or injuries occurring in the crash, would be prevented by ADAS features 
on the vehicles involved in the crash. The probabilities of prevention for each individual 
crash were then aggregated over all crashes to estimate the total numbers of crashes, 
injuries, and deaths prevented by ADAS in each future year, as well as the number that 
would still occur. For example, if the model ultimately determined that a crash had a 
30% probability of being avoided by ADAS, this indicates for every 100 such crashes that 
would otherwise occur without considering ADAS, 30 would be avoided by ADAS and 70 
would still occur.  
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Model verification and analyses 

The last step in the model building process consisted of performing verification and 
validation checks consistent with model building best practice. The research team 
assessed unit and dimension consistency, completed code verification, and conducted 
extreme value testing.  

The model was then used to conduct substantive analyses that were the focus of the 
current study. Specifically, the research team used the model to forecast the number of 
crashes, injuries, and deaths that ADAS will help to prevent, and the number that will 
still occur, annually and cumulatively through 2050. Results compare the numbers 
crashes, injuries, and deaths expected to be avoided in future years given anticipated 
ADAS technology advancement, diffusion, and use, relative to the numbers that would be 
expected if levels of ADAS effectiveness, diffusion into the vehicle fleet, and use remain 
at their base year levels. 

Results are presented in terms of three scenarios:  a “best estimate,” a “low uptake & use” 
scenario, and “high uptake & use” scenario. The “best estimate” represents the safety 
outcomes obtained through simulation with model parameters set to values that the 
research team regards as the most probable based on available data, literature, and 
expert opinion. The “high uptake & use” and “low uptake & use” scenarios represent 
more optimistic and more pessimistic scenarios, respectively, simulated by modifying 
the following key parameters affecting technology uptake and utilization: 

• Attractiveness weight represents how important non-price attributes of the 
vehicle are to consumers, including comfort, familiarity, and safety. Increasing 
this parameter increases the importance of all of these attributes, including safety, 
which in turn increases sales of ADAS-equipped vehicles. 

• Industry learning effectiveness represents how effectively or quickly industry 
spending on each technology package gets transferred into technology maturity 
and can bring down ADAS costs to the consumer. Increasing this would then also 
directly increase sales of ADAS-equipped vehicles. 

• Learning speed represents how quickly public perception of the safety of ADAS 
catches up to actual safety. A value of 1 represents a scenario where public 
perceptions of the safety of the technology perfectly track its actual safety, 0 
represents a scenario where public perceptions of safety do not change even as 
actual safety does. Increasing learning speed increases safety benefits. 

• Initial perceived safety relative to actual safety represents how accurate the initial 
driver perception of technology safety is. A value of 1 represents a scenario in 
which initial public perceptions of the safety of the technology agree perfectly 
with its actual safety; a value of 0 represents a scenario in which the public 
perceives the technology as being much less safe than it actually is. [Note: While 
the current model does not allow perceived safety to exceed actual safety, 
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sensitivity analyses revealed little influence of this parameter on overall model 
inferences.] 

• Technology usage modifier represents the likelihood of having ADAS technology 
turned on and in use (i.e., as opposed to having been deactivated by the driver, or 
the driver ignoring warnings), which affects ADAS safety benefits or lack thereof. 
Values shown in Table A2 in Appendix A are multiplied by this value. 

The values of these parameters that were used to define the “best estimate,” “high uptake 
& use,” and “low uptake & use” scenarios and produce the results presented in this 
report are provided in Appendix B. 

Uncertainty and sensitivity analyses 

In addition to these analyses, the research team performed uncertainty and sensitivity 
analyses. Uncertainty analysis was used to estimate the outcomes of interest in the face 
of stochasticity and parameter uncertainty in the model, while sensitivity analysis was 
used to identify the uncertain parameters with the largest influence on model estimates. 

In uncertainty analysis, the research team was concerned with two types of uncertainty 
in the model: (a) stochasticity and (b) parameter uncertainty. Stochasticity refers to the 
underlying randomness in the simulation model estimates of the probability of 
avoidance of crashes. Parameter uncertainty refers to the inherent uncertainty in the 
values of the model parameters used to define the model and simulate outcomes. To 
carry out uncertainty analysis, each scenario was simulated 500 times, sampling values 
for the model parameters from a normal distribution centered on the best estimate and 
with a standard deviation of 25% of the starting value. This normal distribution was 
truncated to the range of plausible values for a given parameter (e.g., a probability could 
only vary between 0 and 1). All model runs for a given scenario were aggregated 
together, and for each year, the 50th percentile value was taken as the main estimate and 
the 2.5th and 97.5th percentiles were taken as the endpoints of the 95% UI, which 
represents the extent of variation in the relevant outcome measure (e.g., number of 
crashes prevented by ADAS in a year) due to stochasticity and parameter uncertainty. 

Finally, the team conducted a sensitivity analysis in which uncertain model parameters 
were varied, one at a time, in increments of 10%, 20%, 30%, 40%, and 50%, with each 
model run simulated 100 times to account for stochastic variation. When any one 
parameter was changed, all other parameters were kept at their original “best estimate” 
values.  Values were truncated at plausible parameter boundaries (e.g., a probability 
could only vary between 0 and 1). These parameters were then rank ordered based on 
the magnitude of their impact on fatal and nonfatal injuries avoided in 2050. 
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Results 

To estimate the likely future safety benefits of ADAS, the SD model developed by the 
research team was first used to estimate the percentage of all vehicles on U.S. roads that 
would be equipped with various configurations of ADAS technologies over the 30-year 
time horizon examined. Figure 3 presents the share of the U.S. vehicle fleet expected to 
be equipped with each distinct combination or package of ADAS technologies considered 
under each of the technology diffusion scenarios modelled (best estimate, low tech 
uptake & use, high tech uptake & use). 

Figure 3. Expected proportion of total U.S. vehicle fleet represented by each of five different 
technology packages under three different technology diffusion scenarios, 2020–2050. 

 
Note: Shaded ribbons show 95% UIs for estimates based on 1,000 model simulation runs. 
Base: No ADAS.  
A: Warning systems (blind spot, lane departure, forward collision, pedestrian detection).  
B: A + adaptive cruise control systems.  
C: B + automated safety systems (automatic emergency braking, emergency steering assistance, lane keeping 
assistance).  
D: C + dynamic driving assistance. 

In the best estimate scenario, vehicles equipped with a full suite of ADAS technology 
including dynamic driving assistance or SAE Level 2 partial automation (Package D) are 
expected to account for approximately 54% of the entire U.S. vehicle fleet (95% UI: 28%, 
70%) by 2050. In the high uptake & use scenario, approximately 69% (95% UI: 40%, 79%) 
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of vehicles would be equipped with Package D by 2050. In the low uptake & use scenario, 
30% (95% UI: 13%, 46%) would be expected to be equipped with this level of automation. 
Note that in even the low uptake & use scenario, more than 95% of all vehicles on U.S. 
roads are expected to be equipped with at least some ADAS (i.e., Package A or higher) by 
2050. 

Figure 4 presents the expected numbers of crashes, injuries, and deaths prevented by 
ADAS technologies each year through 2050 under the technology diffusion scenarios 
presented in Figure 3. As in Figure 3, three sets of estimates are shown: a best estimate 
based on assumptions deemed most probable, low uptake & use, and high uptake & use 
scenarios. Figure 5 shows summary estimates for the same scenarios for three 
individuals representing the short-term (2030), mid-term (2040) and long-term (2050) 
safety impact of ADAS. 

Figure 4. Expected percent of fatalities, nonfatal injuries, and crashes prevented annually by ADAS 
technologies under each of three technology uptake and use scenarios, United States, 2020–2050. 

 
Note: ADAS technologies considered were warning systems, adaptive cruise control, collision intervention systems, 
and dynamic driving assistance. Annual estimates of crash prevention are based estimated fleet share for various 
technologies shown in Figure 3.   
Base for percentages: Number of crashes, injuries, deaths expected to occur in each future year given levels of 
ADAS market penetration, effectiveness, and use in 2017–2019. (Crashes not involving a car or truck, involving 4 or 
more vehicles, or occurring off public roads were excluded.) 

In the best estimate scenario, results indicate that 16% (95% UI: 13%, 20%) of fatalities, 
representing nearly 6,000 fatalities, could be potentially avoided by ADAS in 2030, with 
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estimates increasing to 34% (95% UI: 29%, 37%) in 2050. Proportions of nonfatal injuries 
and total crashes prevented by ADAS technologies were somewhat lower than fatalities, 
reflecting the varying severity of the types of crashes on which ADAS technology has the 
potential to intervene. Finally, variation in ADAS uptake and technology use could 
contribute to important outcome differences in the future. For example, differences in 
low versus high uptake & use scenarios could lead to an approximately 11 to 15 
percentage point difference in the proportions of crashes, injuries, and deaths prevented 
in 2050.  

Figure 5. Expected percent of fatalities, nonfatal injuries, and crashes prevented annually by ADAS 
technologies under each of three technology uptake and use scenarios in the United States in 2030, 
2040, and 2050. 

 
Note: ADAS technologies considered were warning systems, adaptive cruise control, collision intervention systems, 
and dynamic driving assistance. Annual estimates of crash prevention are based estimated fleet share for various 
technologies shown in Figure 3.   
Base for percentages: Number of crashes, injuries, deaths expected to occur in each future year given levels of 
ADAS market penetration, effectiveness, and use in 2017–2019. (Crashes not involving a car or truck, involving 4 or 
more vehicles, or occurring off public roads were excluded.) 

Tables 4 through 6 provide the corresponding estimates and uncertainty intervals for 
Figure 5, in terms of annual and cumulative counts of fatalities, injuries, and crashes 
expected to be avoided by ADAS technologies and those still expected to occur in 2030, 
2040, and 2050 in each of the three technology uptake and use scenarios. Findings 
indicate that despite substantial numbers of crashes, injuries, and deaths prevented by 
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ADAS, large numbers of crashes, injuries, and deaths will nonetheless remain, even as 
far into the future as 2050.  

In the best estimate scenario, ADAS is estimated to prevent approximately 16,500 traffic 
fatalities in 2050 (Table 4). However, the model indicates that an estimated additional 
27,400 fatalities would still be expected to occur. Similarly, under the best estimate 
scenario, the model predicts that ADAS will help vehicles to avoid 832,000 injuries (Table 
5) and 2,179,000 crashes (Table 6) in 2050, yet 2,629,000 injuries and 6,493,000 crashes 
are still expected to occur despite those crash reductions due to ADAS.  

Cumulative numbers of crashes, injuries, and deaths anticipated to occur in the 30-year 
period from 2021 through 2050 after accounting for the benefits of ADAS are also 
notable. Under the best estimate scenario in which various ADAS technologies enter the 
vehicle fleet at the rates shown previously in Figure 3, ADAS technologies collectively are 
expected to prevent approximately 37 million crashes, 14 million nonfatal injuries, and 
249,000 deaths cumulatively between 2021 and 2050, representing approximately 16% of 
crashes and injuries, and 22% of fatalities that would be expected to occur over the 30-
year period without ADAS. However, despite these savings, an estimated 189 million 
crashes are still expected to occur over the 30-year period, resulting in an estimated 76 
million nonfatal injuries and 896,000 deaths. The cumulative estimates also highlight the 
substantial importance of the rates of uptake and use of ADAS technology in determining 
how rapidly their safety benefits will accrue. The numbers of crashes, injuries, and 
deaths expected to be prevented by ADAS cumulatively through 2050 are nearly twice as 
large in the high uptake & use scenario compared with the low uptake & use scenario. 
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Table 4. Percent and count of fatalities avoided by ADAS technologies and anticipated to occur under each of three technology uptake and use scenarios 
over time through 2050. 
 Annual Fatalities Cumulative Fatalities * 

(values in thousands) % Avoided (95% UI) 
Number avoided 

(95% UI) 
Number anticipated 

(95% UI) Number avoided (95% UI) 
Number anticipated  

(95% UI) 
2030       

Best estimate 16.3% (13.3%, 19.6%) 5.8 (4.8, 7.2) 30.1 (28.4, 31.9) 30.3 (24.4, 35.4) 314.3 (308.2, 320.6) 
High uptake and use 20.7% (15.9%, 25.4%) 7.5 (5.7, 9.3) 28.6 (26.6, 30.7) 38.9 (30.6, 47.0) 306.0 (297.0, 315.1) 
Low uptake and use 8.7% (6.2%, 10.6%) 3.1 (2.2, 3.8) 32.8 (31.5, 34.3) 15.5 (11.2, 18.0) 329.6 (324.9, 334.8) 

2040      

Best estimate 27.7% (23.7%, 32.2%) 11.0 (9.4, 12.9) 28.7 (26.6, 30.6) 118.4 (100.5, 139.3) 606.5 (585.9, 624.8) 
High uptake and use 33.1% (26.7%, 37.0%) 13.1 (10.6, 14.7) 26.6 (24.7, 29.3) 147.1 (117.1, 172.6) 578.9 (552.2, 606.3) 
Low uptake and use 17.1% (14.3%, 19.4%) 6.8 (5.6, 7.8) 33.0 (31.6, 34.6) 67.5 (53.8, 76.6) 658.2 (648.0, 671.8) 

2050      

Best estimate 33.5% (29.0%, 37.0%) 14.7 (12.7, 16.4) 29.2 (27.3, 31.5) 249.4 (214.8, 285.2) 896.0 (858.4, 932.1) 
High uptake and use 37.6% (32.5%, 40.2%) 16.5 (14.6, 17.8) 27.4 (25.9, 29.9) 298.3 (244.7, 334.4) 847.8 (811.6, 899.3) 
Low uptake and use 22.4% (19.8%, 25.3%) 9.8 (8.7, 11.2) 34.1 (32.2, 35.9) 152.1 (129.6, 171.8) 994.1 (973.6, 1,016.3) 

Note: ADAS technologies considered were warning systems, adaptive cruise control, collision intervention systems, and dynamic driving assistance. Annual estimates of crash 
prevention are based estimated fleet share for various technologies shown in Figure 3.   
Base for percentages: Number of fatalities expected to occur in each year shown given levels of ADAS market penetration, effectiveness, and use in 2017–2019. (Crashes not 
involving a car or light truck, involving 4 or more vehicles, or occurring off public roads were excluded.) 
*Cumulative fatalities represent the number avoided and number anticipated to occur cumulatively in 2021 through the year shown. 
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Table 5. Percent and count of nonfatal injuries avoided by ADAS technologies and anticipated to occur under each of three technology uptake and use 
scenarios over time through 2050. 
 Annual Nonfatal Injuries Cumulative Nonfatal Injuries * 

(values in thousands) % Avoided (95% UI) 
Number avoided 

(95% UI) 
Number anticipated 

(95% UI) 
Number avoided  

(95% UI) 
Number anticipated  

(95% UI) 
2030       

Best estimate 11.7% (9.7%, 13.8%) 331 (277, 393) 2,505 (2,441, 2,559) 1,722 (1,393, 1,999) 25,415 (25,133, 25,740) 
High uptake and use 14.8% (11.7%, 18.0%) 420 (331, 510) 2,412 (2,325, 2,502) 2,199 (1,747, 2,616) 24,933 (24,503, 25,387) 
Low uptake and use 6.4% (4.7%, 7.3%) 181 (134, 208) 2,656 (2,625, 2,700) 892 (662, 1,031) 26,247 (26,102, 26,469) 

2040      
Best estimate 19.8% (17.0%, 23.0%) 621 (533, 721) 2,513 (2,409, 2,598) 6,703 (5,715, 7,820) 50,416 (49,264, 51,388) 
High uptake and use 23.6% (19.2%, 26.3%) 739 (602, 825) 2,393 (2,307, 2,529) 8,296 (6,720, 9,690) 48,807 (47,434, 50,352) 
Low uptake and use 12.3% (10.5%, 13.9%) 385 (330, 437) 2,749 (2,698, 2,804) 3,862 (3,081, 4,347) 53,246 (52,761, 53,993) 

2050      
Best estimate 24.0% (21.1%, 26.3%) 832 (731, 909) 2,629 (2,546, 2,731) 14,138 (12,242, 16,090) 76,093 (74,089, 77,997) 
High uptake and use 27.0% (23.3%, 28.3%) 933 (807, 978) 2,528 (2,480, 2,648) 16,814 (13,941, 18,816) 73,399 (71,401, 76,258) 
Low uptake and use 16.1% (14.4%, 18.0%) 557 (497, 625) 2,904 (2,838, 2,964) 8,673 (7,350, 9,778) 81,550 (80,465, 82,792) 

Note: ADAS technologies considered were warning systems, adaptive cruise control, collision intervention systems, and dynamic driving assistance. Annual estimates of crash 
prevention are based estimated fleet share for various technologies shown in Figure 3.   
Base for percentages: Number of injuries expected to occur in each year shown given levels of ADAS market penetration, effectiveness, and use in 2017–2019. (Crashes not 
involving a car or light truck, involving 4 or more vehicles, or occurring off public roads were excluded.) 
*Cumulative injuries represent the number avoided and number anticipated to occur cumulatively in 2021 through the year shown. 
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Table 6. Percent and count of crashes avoided by ADAS technologies and anticipated to occur under each of three technology uptake and use scenarios 
over time through 2050. 
 Annual Crashes Cumulative Crashes * 

(values in thousands) % Avoided (95% UI) 
Number avoided 

(95% UI) 
Number anticipated 

(95% UI) 
Number avoided  

(95% UI) 
Number anticipated  

(95% UI) 
2030       

Best estimate 12.2% (10.2%, 14.5%) 868 (724, 1,033) 6,240 (6,071, 6,380) 4,507 (3,646, 5,236) 63,481 (62,746, 64,314) 
High uptake and use 15.5% (12.3%, 18.8%) 1,102 (874, 1,334) 6,005 (5,773, 6,229) 5,761 (4,581, 6,852) 62,226 (61,129, 63,399) 
Low uptake and use 6.7% (5.0%, 7.7%) 476 (355, 544) 6,631 (6,562, 6,750) 2,331 (1,736, 2,701) 65,656 (65,274, 66,247) 

2040      
Best estimate 20.7% (17.8%, 24.0%) 1,625 (1,400, 1,886) 6,226 (5,956, 6,446) 17,552 (14,938, 20,531) 125,530 (122,555, 128,153) 
High uptake and use 24.6% (20.1%, 27.5%) 1,933 (1,578, 2,162) 5,918 (5,688, 6,273) 21,715 (17,585, 25,360) 121,373 (117,726, 125,472) 
Low uptake and use 12.8% (11.0%, 14.6%) 1,007 (862, 1,145) 6,844 (6,705, 6,981) 10,120 (8,072, 11,390) 132,972 (131,675, 134,894) 

2050      
Best estimate 25.1% (22.1%, 27.5%) 2,179 (1,913, 2,384) 6,493 (6,284, 6,758) 37,022 (32,046, 42,155) 189,028 (183,895, 193,948) 
High uptake and use 28.2% (24.4%, 29.6%) 2,448 (2,120, 2,564) 6,224 (6,109, 6,551) 44,067 (36,443, 49,277) 181,950 (176,723, 189,417) 
Low uptake and use 16.8% (15.1%, 18.9%) 1,461 (1,308, 1,636) 7,212 (7,036, 7,364) 22,729 (19,260, 25,608) 203,323 (200,424, 206,546) 

Note: ADAS technologies considered were warning systems, adaptive cruise control, collision intervention systems, and dynamic driving assistance. Annual estimates of crash 
prevention are based estimated fleet share for various technologies shown in Figure 3.   
Base for percentages: Number of crashes expected to occur in each year shown given levels of ADAS market penetration, effectiveness, and use in 2017–2019. (Crashes not 
involving a car or light truck, involving 4 or more vehicles, or occurring off public roads were excluded.) 
*Cumulative crashes represent the number avoided and number anticipated to occur cumulatively in 2021 through the year shown. 
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Finally, Figures 6 and 7 present results from the one-at-a-time sensitivity analysis in 
which model parameters were varied by specified amounts (from a 50% reduction to a 
50% increase at 10% increments) relative to their “best estimate” values used in the main 
analysis. In addition to illustrating the impact on the overall results of alternative 
assumptions about the values of these parameters, this analysis also illustrates which 
parameters are the most influential overall. Figures 6 and 7 show the impact that 
specified parameter changes have on the main study results (i.e., number of injuries and 
deaths predicted to be prevented by ADAS in 2050) in percentage terms. The 10 
parameters to which overall results were found to be most sensitive are shown.  

Results from sensitivity analyses indicate that the overall “attractiveness weight” of 
ADAS technology has a notable impact on results and inferences. As described in the 
Methods section, “attractiveness” represents the extent to which consumers are willing 
to pay for vehicles equipped with ADAS because of convenience, safety, and/or other 
factors. Attractiveness directly impacts ADAS uptake. Due to its influence and 
importance, this was a key parameter varied through the high and low uptake and use 
scenarios presented in the main study results. As shown in Figure 6, when attractiveness 
is altered to be 20% higher, the predicted number of fatalities avoided in 2050 increases 
by about 5% relative to the best estimate scenario. When attractiveness is altered to be 
20% lower, the predicted number of fatalities prevented in 2050 decreases by about 5%. 
Increases or decreases in this parameter exhibited generally symmetric results. 
Additionally, results of sensitivity analyses for this parameter were generally similar for 
fatalities (Figure 6) and nonfatal injuries (Figure 7).  

Other variables with a meaningful influence on fatalities and nonfatal injuries avoided 
included the base effectiveness of the various technology packages in preventing both 
lane-departure and non-lane-departure crashes, as well as effectiveness of the systems in 
preventing lane-departure crashes specifically in poor lighting conditions. Many traffic 
fatalities involve lane departure and occur in darkness. These results indicate that the 
ability of lane departure warning and lane keeping assistance systems to prevent lane 
departures in general, and particularly in darkness, are expected to have a substantial 
impact on the magnitude of the safety benefits of ADAS technologies. 

Also among the most influential parameters was the proportion of driving for which the 
lane departure warning/lane keeping assistance/lane centering systems included in the 
various technology packages were turned on, used, and in the case of warning systems, 
also the proportion of time that the driver responded appropriately to warnings 
(collectively termed “usage factor” in Figures 6 and 7). As noted previously, recent 
research has shown that consumers deactivate lane departure warning and lane keeping 
assistance systems more often than other systems. These results show that levels of 
consumer usage of lane departure warning and lane keeping assistance technology are 
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expected to have an important influence on the actual safety benefits realized by the 
diffusion of ADAS technologies into the vehicle fleet. 

Finally, also included among parameters to which results were most sensitive was 
“industry learning effectiveness.” This is a measure of the rate at which improvements in 
technology, design, manufacturing, etc., lead to reductions in the cost to consumers of 
equipping vehicles with ADAS technologies. 

Sensitivity results for many of these variables reveal nonsymmetric influence. Other 
than for technology attractiveness, even large increases in parameter values generally 
result in increases of less than 2.5% in the predicted numbers of fatalities and injuries 
prevented by ADAS in 2050. This is because many of the parameter values in 2050 are 
already approaching their theoretical maximum values, limiting the potential for gains 
to be achieved by increases/improvements in many of these parameters. By contrast, 
decreasing the values of the same parameters was predicted to lead to relatively larger 
reductions in the numbers of fatalities and injuries prevented by ADAS. 
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Figure 6. One-at-a-time sensitivity analyses results demonstrating the 10 most impactful uncertain 
parameters* on estimated annual fatalities avoided in 2050. 

 
* Parameter definitions:  
Attractiveness weight: represents the extent to which people are willing to pay more for vehicles equipped with ADAS 
features because of convenience, safety, and other factors.  
Base effectiveness: estimated effectiveness of technology package at preventing a crash in “simple” crash situations 
(i.e., crashes without other hazards involved, like dim light, rain, being in a work zone). 
LD: lane departure, indicating parameter values that pertain to crashes that involve lane departure technology.  
Industry learning effectiveness: a measure of how quickly the industry can bring down ADAS costs to the consumer. 
P: peak value of the usage factor in 2050 relative to initial value in 2017.  
Pkg B: adaptive cruise control systems + warning systems in package A.  
Pkg C: automated safety systems (automatic emergency braking, emergency steering assistance, lane keeping 
assistance) + packages A and B. 
Pkg D: dynamic driving assistance systems + packages A, B, and C. 
Light condition effectiveness: a measure of how much poor light conditions affect the effectiveness of the ADAS 
technology packages. 
Usage Factor: a measure of the proportion of time that a technology is turned on and in use. 
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Figure 7. One-at-a-time sensitivity analyses results demonstrating the 10 most impactful uncertain 
parameters* on estimated annual nonfatal injuries avoided in 2050. 

 
* Parameter definitions:  
Attractiveness weight: represents the extent to which people are willing to pay more for vehicles equipped with ADAS 
features because of convenience, safety, and other factors.  
Base effectiveness: estimated effectiveness of technology package at preventing a crash in “simple” crash situations 
(i.e., crashes without other hazards involved, like dim light, rain, being in a work zone). 
LD: lane departure, indicating parameter values that pertain to crashes that involve lane departure technology.  
Industry learning effectiveness: a measure of how quickly the industry can bring down ADAS costs to the consumer. 
P: peak value of the usage factor in 2050 relative to initial value in 2017.  
Pkg B: adaptive cruise control systems + warning systems in package A.  
Pkg C: automated safety systems (automatic emergency braking, emergency steering assistance, lane keeping 
assistance) + packages A and B. 
Pkg D: dynamic driving assistance systems + packages A, B, and C. 
Light condition effectiveness: a measure of how much poor light conditions affect the effectiveness of the ADAS 
technology packages. 
Usage Factor: a measure of the proportion of time that a technology is turned on and in use. 
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Discussion 

Vehicle technology advancements have significant potential to contribute to 
improvements in motor vehicle traffic safety in the coming years. In particular, ADAS 
technologies can help to prevent crashes by warning the driver of hazards, momentarily 
taking control of the vehicle’s steering and/or brakes. ADAS technologies have become 
increasingly popular in vehicles over the last several years. Several studies have 
estimated the relative crash involvement of vehicles with versus without particular 
ADAS technologies. However, predicting the overall number of crashes, injuries, and 
deaths that will be prevented by ADAS in the future requires consideration of a wide 
array of interconnected factors that all act to influence bottom-line safety benefits, 
including not only the effectiveness of the technology itself but also factors influencing 
consumer uptake and use of such technologies. This project sought to estimate how 
many motor vehicle crashes, injuries, and deaths ADAS technologies are likely to prevent 
over the next 30 years.  

Overall, this project makes a unique contribution to the field by offering a novel, 
systems-grounded approach to modeling the uncertain, complex, and dynamic factors 
that may affect the estimates of ADAS technology adoption and their resulting crash 
avoidance benefits over time. Using a system dynamics approach, the current study 
estimates that improvements in ADAS technology and increases in uptake and use are 
likely to prevent approximately 5,800 traffic fatalities (or approximately 16% of 
fatalities) and 331,000 injuries (12% of injuries) that would otherwise be expected to 
occur in year 2030 if ADAS effectiveness, uptake, and use were to remain at the levels 
they were in 2017–2019 (the base year for the models used in this project). Moreover, the 
current study estimates that increased effectiveness, uptake, and use of ADAS 
technologies will result in the prevention of approximately 249,400 traffic fatalities and 
14 million nonfatal injuries cumulatively in 2021 through 2050. 

While these represent critical potential contributions to road safety, there are still many 
scenarios and contexts in which ADAS technologies may not be able to effectively 
intervene, as reflected in estimates of crashes, nonfatal injuries, and deaths expected to 
remain on U.S. roads even in 2050, when the current study predicts that basic ADAS 
technologies will be ubiquitous and a substantial majority will be equipped with collision 
intervention systems including automatic emergency braking and lane keeping 
assistance. The model estimates that in the highest ADAS uptake and use scenario 
considered, ADAS would be expected to prevent approximately 38% of all traffic 
fatalities that would have occurred in 2050 given current levels of ADAS effectiveness, 
uptake, and use, meaning that 62% of those fatalities (or approximately 27,000 fatalities) 
would still be expected to occur despite the anticipated ubiquity of ADAS by 2050. These 
findings are consistent with previous research cautioning that automated vehicle safety 
systems are unlikely to eliminate all or most traffic fatalities and injuries in the near 
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future (e.g., Mueller, 2020; Shetty et al., 2021). Thus, consistent with the Safe System 
Approach, which calls for a layered, redundant approach to safety, there remains a clear 
need to continue to invest in a wide array of proven traffic safety measures, including 
but not limited to vehicle technology.  

With respect to underlying ADAS technology diffusion over time, the model forecasts 
were similar to previous forecasts by others for basic warning systems, but somewhat 
lower for collision intervention features and partial driving automation. HDLI (2022) 
estimates that the proportions of registered vehicles in the United States that are 
equipped with lane departure warning systems, blind spot monitoring systems, and 
automatic emergency braking will all reach 95% in 2045. The current study similarly 
predicts 95% of registered vehicles will be equipped with lane departure warning and 
blind spot monitoring systems by 2045. However, the current study predicts only roughly 
65% of the vehicle fleet will be equipped with automatic emergency braking (Packages C 
and D) in 2045, rising to approximately 85% in the most optimistic scenario, though these 
estimates are subject to substantial uncertainty. HDLI predicts the proportion of vehicles 
equipped with SAE Level 2 partial driving automation will reach 95% “sometime after 
2050.” By contrast, even under the highest technology diffusion scenario considered, the 
current study predicts that only 69% of U.S. vehicles will be equipped with such systems 
(Package D) in 2050. Estimates and forecasts of SAE Level 2 vehicle diffusion and higher 
levels of automation have shown wide variation in the literature and have been typified 
by considerable uncertainty (Collie et al., 2017; Lewis & Grossman, 2019; Litman, 2022). 
Regarding fleet share of vehicles without any ADAS technology (i.e., not even basic 
warning systems), uncertainty peaked around year 2035, with 5%–25% projected fleet 
share, but dropped significantly by 2050, by which time over 95% of all vehicles on U.S. 
roads were predicted to be equipped with at least basic ADAS in even the most 
pessimistic scenario considered. 

In terms of overall crash prevention, the model results showed reasonable agreement 
with previous studies that have attempted to quantify the numbers of crashes, injuries, 
and deaths potentially preventable by ADAS given large-scale deployment (e.g., Benson et 
al., 2018; IIHS, 2022; Mueller et al., 2020; Sherony & Gabler, 2020). The current study 
estimates that ADAS will help to avoid roughly 15%–30% of crashes and nonfatal injuries 
and 20%–40% of traffic fatalities in 2050, corresponding to nearly 15,000 total annual 
fatalities and more than 800,000 nonfatal injuries avoided in 2050. Notably, the scenarios 
indicated rapid safety gains in the first two decades modeled, with the rate of increase in 
the annual number of crashes avoided slowing in later years. The predictions of “best 
estimate” and “high uptake & use” scenarios became relatively close by 2050, whereas 
crash and fatality reductions in the low uptake & use scenario remained considerably 
lower; this may be explained by the assumption that by this time, nearly all vehicles in 
the fleet would have ADAS technology, reducing opportunities for additional safety 
benefits attributable solely to increases in technology uptake.  
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In another study that sought to estimate future crash prevention by ADAS in relation to 
its diffusion into the vehicle fleet, Sherony & Gabler (2020) estimated that a theoretical 
suite of ADAS features would reduce severe injuries to vehicle occupants by 33% in 2040. 
While the current study estimates smaller proportions of avoided injuries, Sherony & 
Gabler examined injuries coded as 2 or greater on the Abbreviated Injury Scale (AIS), 
which represent approximately the 15% most severe injuries that occur in crashes 
(NHTSA, 2023). Thus, their estimates may be more comparable to the current study’s 
estimates of fatalities than injuries. The current study estimates that ADAS will avoid 
28% of fatalities in 2040 in the best estimate scenario and 33% in the high uptake & use 
scenario. Sherony & Gabler’s estimates are also greater than those of the current study 
because they include Intersection-ADAS (I-ADAS), not considered in the current study, 
which they estimate would help to prevent a substantial proportion of straight-crossing-
path (“T-bone”) and left-turn-across-path crashes. The current study did not consider I-
ADAS as it was not yet available on vehicles available for purchase in the United States at 
the time the current study was being performed. Existing ADAS technologies considered 
in the current study have been shown to have little if any ability to intervene in these 
types of crashes (AAA, 2022). 

Notably, this study predicts ADAS will avoid greater proportions of fatalities compared to 
injuries and crashes. The research team posits that this difference is due to underlying 
assumptions regarding the ability of the types of ADAS technologies considered to 
prevent specific types of crashes and the relative severity of those types of crashes as 
reflected in the data input into the model (i.e., police-reported crashes that occurred in 
the United States in 2017–2019). For example, the model assumes that lane departure 
crashes are highly avoidable when appropriate usage of the technology is high. The 
proportion of crashes that involve lane departure is higher among fatal crashes 
(approximately half) than among nonfatal crashes (approximately one-third), thus high 
effectiveness and use of technology that prevents lane departures would be expected to 
yield a greater percentage reduction in fatalities than in total crashes. Alternatively, if 
future effectiveness and/or use of lane keeping technologies differ from current study 
assumptions and/or if forward collision prevention technologies are relatively more 
effective, the relative proportions of fatal versus nonfatal crashes avoided by ADAS 
would differ.   

From the sensitivity analysis of ADAS diffusion scenarios, a key finding was the 
importance of the attractiveness of ADAS technology to the public, and to a lesser extent 
also industry learning on the numbers of future deaths and injuries avoided by ADAS 
and the rates at which benefits accrue. These measures notably impact ADAS uptake 
through the willingness of consumers to pay for ADAS-equipped vehicles because of the 
safety and convenience they afford, as well as the speed in which industry brings down 
ADAS costs to the consumer. In other words, speed of uptake through these and 
potentially other mechanisms has an important impact on the numbers of deaths and 
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injuries potentially prevented over time. To maximize safety benefits and the rate at 
which they accrue, there is a need for industry and other stakeholders to increase the 
attractiveness of ADAS-equipped vehicles to consumers and to ensure that their cost does 
not reduce their attractiveness or render them unaffordable. 

Sensitivity analyses also revealed that the proportion of time that drivers choose to use 
the technology may also have a major impact on the magnitudes of future safety 
benefits, especially for lane departure warning and lane keeping assistance systems. 
Previous research has found consumers often choose to turn these systems off (e.g., 
Reagan & McCartt, 2016). More work is needed to improve drivers’ experiences with lane 
departure warning and lane keeping assistance systems, so that users do not opt to 
deactivate them and thus negate their potential safety benefits.  

Results of the sensitivity analysis also highlight the potential role for future technological 
improvements such as improved performance in low-light conditions. This is especially 
important for prevention of severe injuries and deaths. Half of all traffic fatalities in 
2017–2019 occurred in darkness, as did more than three quarters of all pedestrian 
fatalities. Research has shown that many systems available on vehicles today perform 
less well in darkness than they do in daylight (Cicchino, 2022). While many of the 
systems examined also tend to be less effective in other specific scenarios such as when 
driving in adverse weather or roadway surface conditions, sensitivity analysis suggests 
that improving ADAS performance in these conditions is much less important than 
improving performance in darkness, as the proportions of crashes that occur in such 
conditions are smaller.  

Limitations and Future Research 

Limitations 

The current study has several limitations that should be noted. In general, the current 
study sought to make predictions about future crashes avoided by ADAS. The general 
approach to doing this was to model the number and type of crashes that would occur in 
future years given current availability, effectiveness, and use of ADAS technologies; the 
probability that a given vehicle involved in a future crash would be equipped with 
particular technology; the probability that the technology would be in use (i.e., not 
deactivated) at the time; and the probability that the technology would be able to avoid 
the crash given its presence and use (a function of its base effectiveness as well as the 
impact of any special circumstances, e.g., darkness) that could reduce its effectiveness.  
Each stage of this process incorporates many assumptions with the potential to influence 
study outcomes. 
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When estimating the number and characteristics of future crashes, the study sampled 
police-reported crashes that occurred in 2017–2019 and assumed that future years would 
be similar, before accounting for crashes prevented by ADAS, other than that the 
absolute number of crashes would increase due to uniform increases in the total amount 
of driving. The study did not attempt to account for other external factors unrelated to 
ADAS that might affect the number or characteristics of crashes in the United States. For 
example, nonuniform changes in driving patterns (e.g., differing trends in urban versus 
rural areas or between different demographic groups) could influence the total number 
of crashes, their characteristics, the probability that they could be prevented by ADAS, or 
the probability that the vehicles involved would be equipped with ADAS, in ways that the 
current study did not account for. The COVID-19 pandemic presents a salient 
contemporary example. Data from the NHTSA indicate that rate of traffic fatalities per 
mile driven increased to their highest levels in more than a decade (and much higher 
than in the base year used in the current study) in 2020 and remained elevated in 2021, 
leading to a large increase in the total number of traffic fatalities (Stewart, 2023). 
Although the study methodology should still validly estimate the percentage of crashes, 
injuries, and deaths avoided by ADAS in the event of changes to the overall crash rate or 
fatality rate, it appears that the characteristics of fatal crashes also shifted. For example, 
Tefft & Wang (2022) found large increases in the proportion of single-vehicle fatal 
crashes in 2020. Changes in the characteristics of future crashes could potentially change 
the percentage of future crashes preventable by ADAS.   

Another limitation of the approach is that the study focused on estimating the 
probability that ADAS would prevent the occurrence of a given crash. In reality, ADAS 
might fail to prevent some crashes yet still reduce the severity of any resulting injuries 
(e.g., by reducing impact speed). The current study might thus underestimate to some 
degree the numbers of fatalities and injuries prevented by ADAS. 

The study is also limited by the quality of the data used as inputs. Several studies have 
indicated that police-reported crash and injury data often underestimate total vehicle 
related injuries, particularly those involving pedestrians, bicyclists, single-vehicle crash 
events, and injuries caused in situations that don’t trigger the threshold for reporting or 
in which injured parties perhaps seek to avoid contact with law enforcement for various 
reasons. NHTSA (2023) estimates that as many as 32% of nonfatal injury crashes and 60% 
of crashes not resulting in injuries go unreported. Harmon et al. (2021) estimated that for 
every police-reported crash involving a pedestrian, there were an additional 8 to 10 
pedestrians treated in emergency departments for injuries sustained in crashes not 
reported to the police. Given the focus of this work on understanding broad trends in 
fatal and nonfatal injury, these data should appropriately capture the focal outcomes; 
however, it is important to interpret the model results as relating to crash prevention 
among the police-reported incidents, which are not necessarily transferrable to all 
traffic-related crashes and injuries.  
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The study did not attempt to account for all possible changes or events that might 
influence the availability and uptake of ADAS-equipped vehicles. In the years since the 
onset of the COVID-19 pandemic there have been previously unanticipated supply chain 
disruptions as well as large increases in the price of new and used vehicles. Shifts related 
to consumer interest in battery-electric vehicles and/or associated policy could influence 
the rate of fleet turnover and thus the rate at which older vehicles without ADAS are 
replaced by new vehicles with ADAS. Also not considered were cybersecurity issues, 
which could potentially influence consumer demand for or use of technologies that 
automate parts of driving. Such factors were deemed beyond the scope of the current 
study but should be investigated in future research.   

While the research team sought the best available data regarding the effectiveness of 
existing ADAS technologies, existing research and literature do not quantify the 
effectiveness of all types of ADAS, the effectiveness of all implementations of any 
particular type of ADAS, or the impact of adverse conditions (e.g., darkness, rain) on the 
effectiveness of most systems. Thus, in many cases, the research team had to rely on 
expert judgment to supplement existing literature and data. In addition, the effectiveness 
of future iterations of ADAS are by definition unknown. The research team assumed that 
there would be improvements in the base effectiveness of systems, as well as 
improvements in their effectiveness under adverse conditions such as darkness. The 
research team used its best judgment in estimating the eventual effectiveness of the 
systems considered as well as the rate at which the technology would mature, however, 
the actual evolution of the effectiveness of these technologies may be faster or slower 
than anticipated. Note that probabilistic uncertainty analyses revealed that even large 
increases in ADAS effectiveness had little impact on the main study results; however, the 
numbers of crashes, injuries, and deaths prevented may be lower than reported here if 
actual ADAS effectiveness is substantially lower than assumed.  

Relatedly, the research team made some simplifying assumptions to limit the scope of the 
current study. For example, research has shown that ADAS that are reliant on cameras 
perform poorly in bright direct sunlight (Yoneda et al., 2021); however, the current study 
does not account for the proportion of systems that are camera-based or the distribution 
of the angle of the sun relative to vehicle trajectories in the crashes examined. Many of 
today’s ADAS have been shown to be reasonably effective in preventing crashes at low 
speeds but far less effective at higher speeds; however, the current study was unable to 
consider speed due to limitations of the input data, which do not report pre-crash speeds 
in most crashes. While the ability of ADAS to intervene in higher-speed crashes may 
improve in the future, the current study’s inability to account for speed likely resulted in 
some degree of overestimation of the numbers of crashes avoided, especially early in the 
study period before substantial maturation of the relevant technologies.  



37 

 

While the study did attempt to account for maturation of the technology over time, this 
was operationalized in terms of increasing effectiveness in preventing types of crashes 
deemed preventable in the first place. For example, the study does not account for future 
ADAS, such as the I-ADAS described by Sherony & Gabler (2020), that could prevent turn-
across-path or “T-bone” crashes. Relatedly, the study also did not attempt to predict the 
safety impacts of higher levels of automation, e.g., SAE Levels 3 and higher, as no such 
vehicles are yet available for consumers to purchase in the United States as of when this 
research was performed, and thus there were no data on which to base any assumptions 
about their uptake, use, or safety performance. 

Finally, the study also did not account for crashes caused directly or indirectly by ADAS. 
It is theoretically possible that ADAS could cause crashes directly through malfunctions 
or errors, as well as indirectly by performing unexpected movements that surprise other 
drivers. The current study assumes such crashes would be extremely rare. ADAS could 
also contribute indirectly to crashes if drivers do not understand it, rely on it excessively, 
or misuse or abuse it on purpose (e.g., using partial driving automation systems to 
facilitate disengagement from driving or engagement in distracting secondary tasks). 
While there is some suggestive evidence that drivers may do this (e.g., Mueller et al., 
2022), there are not yet sufficient data to quantify the numbers of new crashes to which 
ADAS might contribute. 

Future directions and research needs 

The ADAS technologies included in the current study may be viewed as “building blocks” 
of higher levels of automation. While this study intentionally excluded SAE Level 3–5 
vehicles due to the lack of data to inform baseline assumptions about their crash 
involvement or crash prevention performance, future research will need to focus on 
estimating the long-term fleet penetration of more highly automated systems and 
defining realistic expectations of their safety performance. To date, estimates regarding 
readiness for deployment of higher-level automated vehicles (i.e., SAE Level 3 or above) 
are extremely variable (SAE, 2021). Some manufacturers previously predicted that highly 
automated vehicles would be available to consumers by 2020 (Lewis & Grossman, 2019) 
and “fully automated” vehicles by 2022 (Collie et al., 2017). More conservative estimates 
range from 2045 for half of all new vehicles to be “autonomous” (Litman, 2022) to 2050 
before vehicles equipped with Level 3 and higher automation will achieve even 66% of 
market share (Nieuwenhuijsen et al., 2018). In the current study, it was only in the high 
uptake & use scenario that Level 2 automation was predicted to reach 66% fleet share in 
2050. Speculation about the safety effects of fully automated vehicles in relation to 
crashes involving other vehicles, trucks, pedestrians, bicyclists, and motorcyclists is even 
more variable. Transportation researchers need valid and reliable estimates of not only 
adoption rates, but also crash avoidance performance under a wide range of scenarios, 
especially those likely to produce fatal and serious injuries.  
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Relatedly, there is a need for future research to examine mode-specific safety effects of 
ADAS technologies. The current study was unable to provide estimates of the safety 
benefits of ADAS disaggregated by road-user type. Although crashes involving 
pedestrians, bicyclists, passenger vehicles, and large trucks were all included in the 
study, the data required to specify precise probabilities of crash avoidance for specific 
crash types for specific modes of travel were generally not available, thus the crash 
avoidance probabilities used in the current study represented averages over all included 
modes and road-user types. However, in practice, the probability that a given ADAS 
technology would prevent a car from striking another car versus a large truck versus a 
pedestrian might differ, and the simulation model would need to incorporate such mode-
specific crash avoidance probabilities to produce reliable mode-specific estimates of 
safety benefits. Additionally, this study excluded crashes that involved neither a 
passenger car nor a heavy truck. Future research and data to support assumptions, 
model decisions, and parameters would be valuable in refining model performance by 
mode and/or creating separate SD models that can be calibrated to specific road-user 
types, ADAS performance, and crash scenarios. 

In addition, as the web of factors affecting the rollout of vehicles equipped with ADAS 
and higher levels of automation can be refined with the support of additional research, 
there is also a need to further refine the estimated safety outcomes. For example, the 
current study was unable to account for the relationship between pre-crash vehicle 
speed and the probability of crash avoidance. Past studies have found that many ADAS, 
such as pedestrian detection systems, do not perform well at high speeds (AAA, 2019; 
Cicchino, 2022). However, the crash databases used as inputs in the current study 
contain no information on pre-crash speed for many crashes, and the reliability of the 
speed data, when present, is largely unknown. Thus, it is possible that ADAS would fail to 
prevent some of the crashes that the current study predicted it would prevent, due to the 
speeds involved. Reliable pre-crash speed data would enable more precise estimates of 
safety benefits. Moreover, it would also enable estimation of the safety impact of 
improving ADAS performance at higher speeds, or alternatively, of other strategies to 
reduce speeding. Relatedly, the current study did not consider technology that would 
restrict vehicles from exceeding speed limits. Such technologies are already being 
introduced on vehicles available for sale in Europe (European Transport Safety Council, 
2023). Given the importance of kinetic energy management as foundational to a Safe 
System Approach to injury prevention, future research and model expansion to account 
for dynamics and influences related to speed would be useful. 

Additionally, several studies in the planning/travel behavior literature speculate on how 
higher-level automation will affect the relationships among travel behavior and land 
development, with many predicting substantial increases in trip generation, vehicle 
miles traveled, and automobile dependency (Gruel et al., 2016; Larson et al., 2020; Wellik 
et al., 2020; Zakharenko, 2016). The extent to which these conclusions apply at lower 
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levels of automation has not been examined. However, it is logical to assume that 
technology that eases the mental burden or opportunity cost of driving—such as 
technology that explicitly permits the driver to disengage from driving and attend to 
work or other interests while traveling—may lead to increases in individuals’ willingness 
to travel more further and more frequently, thus increasing exposure to conditions 
associated with crashes. More research is needed to understand how increasing levels of 
vehicle automation may influence such factors, and how that will in turn impact traffic 
safety. 

Finally, motor vehicle traffic injuries and fatalities in the United States disproportionally 
affect disadvantaged populations including those with lower levels of education (Harper, 
2015) and Black and Indigenous communities (GHSA, 2021; Raifman et al., 2022). There is 
a need to further explore the ways in which anticipated benefits of ADAS technology are 
likely to be distributed across the population. The current study predicted the future fleet 
share of ADAS-equipped vehicles at a national level; however, in practice, adoption rates 
are likely to vary greatly in relation to demographic characteristics such as education, 
income, age, and geography (Girasek and Taylor, 2010; Metzger et al., 2020). Although 
beyond the scope of the current study, research is needed to examine ways in which 
ADAS and vehicle automation are likely to mitigate or exacerbate inequities in safety and 
mobility. 

Conclusions  

Predicting how many crashes, injuries, and deaths are likely to be prevented in the 
future by advanced vehicle technology requires consideration of a wide array of 
interconnected factors that all act to influence bottom-line safety benefits. This study 
produced a simulation model and test bed to consider the complex dynamics of ADAS 
diffusion into the vehicle fleet and the safety outcomes expected to result. Results suggest 
that ADAS technologies will prevent large numbers of crashes and save many lives in the 
future. While the study considered a wide range of potential technology uptake and use 
scenarios, in the scenario the authors regard as most probable, ADAS is anticipated to 
avoid over 249,000 traffic fatalities, 14 million nonfatal injuries, and 37 million police-
reported crashes cumulatively between 2021 and 2050. However, even accounting for 
the avoidance of these crashes, the study predicts that nearly 900,000 traffic fatalities, 76 
million nonfatal injuries, and 189 million crashes will still occur over the same period. 
This research model makes an important contribution to the field in that it takes into 
account various exogenous and endogenous factors to forecast the safety outcomes 
associated with the proliferation of ADAS and partial vehicle automation across the 
vehicle fleet. While the current study has limitations related to its underlying data 
sources, assumptions, and modeling decisions constraining the scope of the study, it 
offers a robust way to conceptually examine ADAS system dynamics, transparently test 
assumptions, and produce crash avoidance estimates over a long time horizon. Future 
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research could expand upon this methodology and account for additional factors, higher 
levels of automation, and advancements in knowledge regarding the effectiveness and 
performance of such technologies, as well as further disaggregate estimated safety 
benefits in relation to demographic and other road user characteristics. From the current 
study, it is clear that ADAS technologies are expected to make a significant contribution 
to preventing injuries and saving lives on U.S. roads; however, it is not realistic to expect 
for them to prevent all or most crashes within the next 30 years. Thus, there remains a 
need to continue to invest in a wide array of proven traffic safety measures including but 
not limited to vehicle technology.  
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Appendices 

Appendix A. Assumptions and Decision Rules Regarding Crashes ADAS May Help to Prevent 

As described in the Methods section, determination of the probability that a particular ADAS technology would avoid or 
prevent a given crash was assessed in two major steps. In the first step, the research team assessed whether each 
technology considered in the study had any possibility (versus none) to prevent a given crash based solely on the general 
type of crash as defined by the combination of the crash type/geometry (FARS and CRSS variable: acc_type) and the pre-
crash maneuvers of each vehicle (FARS and CRSS variable: p_crash2).  

Decisions regarding whether a given technology had any potential to prevent a particular type of crash were made 
independently by two members of the research team based on literature reviews and expert opinion. Disagreements were 
resolved through discussions with the larger research team and are summarized below in Table A1. Crashes deemed 
potentially preventable are identified by a “Y” in the corresponding cell; empty cells denote no possibility of prevention.  

The following broad categories of crashes were deemed not preventable by ADAS and thus not examined in further detail 
nor shown in the tables: crashes resulting from vehicle malfunctions (e.g., tire blow out, stalled engine), crashes involving 
pre-crash loss of control/traction, wrong-way crashes, straight-crossing-path (“T-bone”) collisions, turn-across-path 
collisions (AAA, 2022), crashes occurring on non-trafficways or ramps, crashes involving vehicles entering or leaving 
driveways, and crashes involving objects (e.g., debris) on the roadway.  

Tables A1 shows the specific combinations of crash type and pre-crash maneuvers that the team determined ADAS had 
some possibility of preventing (and thus carried forward to the next step of the analysis) versus those deemed not 
preventable. 

Note that the purpose of this step was simply to distinguish between crashes that the ADAS considered in the current study 
had any possibility versus no possibility of preventing, not to determine decisively that a particular crash would be 
prevented. The probability of prevention for crashes deemed possibly preventable in this step is assessed subsequently in 
the next step of the analysis. 
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Table A1 a-g. Decision rules regarding potentially avoidable crashes according to pre-crash maneuver, crash type, and specific ADAS 
technology type * 

 

 

  

PD BSD LDW FCW ACC AES AEB LKA DDA PD BSD LDW FCW ACC AES AEB LKA DDA
Over the Lane Line or Edge of Road (10-13) Y Y Y Y Y Y Y Y Y
Road End Depature Crash (14) Y Y Y Y Y Y Y Y Y Y Y
Turning Left or Right (15, 16) Y Y Y Y Y Y Y Y
Going Straight (17) Y Y Y Y Y Y Y Y
Vehicle in Lane Stopped, Decelerating (50-53) Y Y Y Y Y Y Y Y Y Y
Pedestrian in Road or Approaching Road (80, 
81, 82) Y Y Y Y Y Y

Y; 13 
only Y Y Y Y

Crash Type (FARS, CRSS "acc_type" codes)Pre-crash maneuver (FARS/CRSS "p_crash2" 
codes) A.  Roadside Departure (1, 6) B.  Motorist Forward Impact (11-14)

PD BSD LDW FCW ACC AES AEB LKA DDA PD BSD LDW FCW ACC AES AEB LKA DDA
Over the Lane Line or Edge of Road (10-13) Y Y Y Y Y Y Y Y Y Y Y
Road End Depature Crash (14) Y Y Y Y Y Y Y Y Y Y Y Y Y
Turning Left or Right (15, 16) Y Y Y Y Y Y Y
Going Straight (17) Y Y Y Y Y Y Y
Vehicle in Lane Stopped, Decelerating (50-53) Y Y Y Y Y Y Y Y Y Y
Pedestrian in Road or Approaching Road (80, 
81, 82) Y Y Y Y Y

C.  Rear-End Another Vehicle (20, 24, 28) D.  Forward Impact (38, 40)
Crash Type (FARS, CRSS "acc_type" codes)Pre-crash maneuver (FARS/CRSS "p_crash2" 

codes)
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Table A1. Continued.

 

 

*Note: a few cells indicate where only specific crash type codes were relevant (e.g., “13 only” in Table 2B), instead of all crash type codes represented by the given 
box (e.g., in that example, codes 11-14). 
Abbreviations: DDA: dynamic driving assistance; LKA: lane keeping assistance; AEB: automatic emergency braking; AES: automatic emergency steering; ACC: 
adaptive cruise control; FCW: forward collision warning; LDW: lane departure warning; BSD: blind spot detection; and PD: pedestrian detection. 
Color coding shows technologies grouped into packages in subsequent analyses. Light blue codes represent those technologies included in Package A (i.e., FCW 
and everything to the left of it). The next level of darkness represents those in Package B (i.e., ACC along with everything to the left of it). Package C included LKA 
and everything to the left. Finally, Package D included all ADAS technologies listed here and represents an SAE Level 2 system. 

  

PD BSD LDW FCW ACC AES AEB LKA DDA PD BSD LDW FCW ACC AES AEB LKA DDA

Over the Lane Line or Edge of Road (10-13) Y Y Y Y
Y; 50,64 

only Y
Y; 50,64 

only
Y; 50,64 

only
Road End Depature Crash (14) Y Y Y Y Y Y
Turning Left or Right (15, 16) Y Y Y
Going Straight (17) Y Y Y Y Y
Vehicle in Lane Stopped, Decelerating (50-53) Y Y Y Y Y Y Y Y
Pedestrian in Road or Approaching Road (80, 
81, 82) Y Y Y Y Y

Crash Type (FARS, CRSS "acc_type" codes)
E.  Sideswipe/Angle Collisions (46&47) F.  Same Trafficway, Opp. Direction (50, 58, 60, 64)

Pre-crash maneuver (FARS/CRSS "p_crash2" 
codes)

PD BSD LDW FCW ACC AES AEB LKA DDA
Over the Lane Line or Edge of Road (10-13) Y Y
Road End Depature Crash (14)
Turning Left or Right (15, 16) Y
Going Straight (17) Y
Vehicle in Lane Stopped, Decelerating (50-53) Y Y Y
Pedestrian in Road or Approaching Road (80, 
81, 82) Y Y

Pre-crash maneuver (FARS/CRSS "p_crash2" 
codes)

Crash Type (FARS, CRSS "acc_type" codes)
G.  Vehicle Turning Right or Left Across Other 

Vehicle (70 & 72)
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Estimating the Probability of Avoidance/Prevention for Crashes Deemed Potentially Preventable 

As described previously, if it was determined that there was any possibility that an ADAS technology considered in the 
current study could have helped to prevent a given crash, the model then estimated the probability that the ADAS would 
successfully avoid or prevent the crash. To do this, the model took into account the assumed baseline effectiveness of the 
relevant ADAS for the relevant crash type, any hazards present in the crash that would reduce system effectiveness (e.g., 
rain, darkness, a work zone), and the probability that the relevant ADAS would be activated or in use at the time, as 
opposed to turned off. 

Given the prevalence of lane departure crashes (approximately one third of nonfatal and one half of fatal crashes) and the 
high probability of turning off lane departure and lane keeping technologies as compared to other ADAS technologies 
(Reagan & McCartt, 2016), estimates of effectiveness were disaggregated to address lane-departure crashes and non-lane-
departure crashes separately, and probabilities of system use were disaggregated to address lane-keeping features (lane 
departure warning and lane keeping assistance) separately from other features typically present on the same vehicle (e.g., 
forward collision warning, automatic emergency braking, etc.). The table below displays the assumed model effectiveness 
estimates, disaggregated according to whether it was a lane departure crash or not and if the vehicle was equipped with 
LDW or LKA technology or not. 

The top two rows provide baseline technology effectiveness estimates (i.e., proportion of crashes likely prevented) 
according to whether it was a lane departure crash and whether the vehicle had relevant lane departure technologies, for 
each technology package (A–D). The next four rows include multipliers that were used to reduce the likely effectiveness of 
the technology given a variety of hazardous conditions. The final row provides estimates for technology use (i.e., whether 
or not the technology was turned on).  

For each estimate, there is an Initial value (i.e., assumed effectiveness in 2017) and a Final value, representing the research 
team’s assumptions regarding the potential improvement in the technology by 2050. Values in intermediate years were 
estimated using an S-shaped curve to estimate technological maturity and improvement between these Initial and Final 
values.
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Table A2. ADAS Technology Effectiveness and Use Parameters Included in Model to Produce the Results Presented in This Report. 
 Package A: Package B: Package C: Package D: 

 FCW, LDW, BM, and PD ACC + Package A AEB, ESA, and LKA + Package B DDA + Package C 

Base Effectiveness 

N
on

-la
ne

-d
ep

ar
tu

re
 

cr
as

he
sa  

Initial / Finald 

With LDW: 0.10 / 0.20 
Without LDW: 0.10 / 0.20 

Initial / Finald 

With LDW: 0.30 / 0.70 
Without LDW: 0.30 / 0.70 

Initial / Finald 

With LKA: 0.40 / 0.90 
Without LKA: 0.50 / 0.90 

Initial / Finald 

With LKA: 0.70 / 0.95 
Without LKA: 0.70 / 0.95 

Potential for crash mitigation is limited 
because warnings do not directly prevent 
crashes. Values same for “With LDW” and 
“Without LDW” because effectiveness in 
preventing non-lane-departure crashes is 
assumed independent of LDW. 

Although intended as a convenience 
technology, ACC may help to prevent 
some crashes by reducing the driver’s 
cognitive load. There is room for 
considerable technological maturation with 
respect to performance in urban stop-and-
go traffic. 

LKA may reduce the risk of some crashes 
that were preceded by a lane departure 
but which were not classified as lane-
departure or road-departure crashes (e.g., 
a rear-end crash or sideswipe that was 
preceded by an unintentional lane 
departure). 

Same values used with and without LKA 
because DDA centers the vehicle in its 
lane when the system is active. 

La
ne

-d
ep

ar
tu

re
 c

ra
sh

es
a  Initial / Final  

With LDW: 1.00 / 1.00 
Without LDW: 0.1 / 0.15 

Initial / Final  
With LDW: 1.00 / 1.00 
Without LDW: 0.1 / 0.15 

Initial / Final  
With LKA: 1.00 / 1.00 
Without LKA: 0.1 / 0.15 

Initial / Final  
With LKA: 1.00 / 1.00 
Without LKA: 0.1 / 0.15 

Majority of lane-departure crashes would 
not be prevented if lane-keeping features 
are deactivated, however, use of FCW and 
BSM may prevent some lane departures 
from resulting in collisions. 

Majority of lane-departure crashes would 
not be prevented if LDW is turned off, 
however, use of FCW and BSM may 
prevent some lane departures from 
leading to crashes. Addition of ACC is not 
expected to meaningfully increase 
probability of avoiding lane departure 
crashes. 

Majority of lane-departure crashes would 
not be prevented if LKA features are 
deactivated, however, use of AEB may 
prevent some lane departures from 
resulting in collisions. 

Deactivating LKA features would 
functionally deactivate DDA, thus values 
for lower packages (without DDA) apply 
when LKA is deactivated. 

Reduction in Effectiveness 

Lo
w

-v
is

ib
ili

ty
 c

on
di

tio
ns

 
 (e

.g
., 

ra
in

)b   

Modifiers to Initial / Final  
With LDW: 0.75 / 0.95 
Without LDW: 0.75 / 0.95 

Modifiers to Initial / Final  
With LDW: 0.90 / 0.95 
Without LDW: 0.90 / 0.95 

Modifiers to Initial / Final  
With LKA: 0.85 / 0.95 
Without LKA: 0.85 / 0.95 

Modifiers to Initial / Final  
With LKA: 0.90 / 0.98 
Without LKA: 0.90 / 0.98 

Some reduction in effectiveness is low 
visibility is anticipated initially. This is 
expected to improve over time as new 
sensing modalities are used. 

Performance of ACC is not reduced 
substantially by low visibility; however, use 
of longer-range sensors in the future is 
anticipated to reduce performance 
decrement associated with low visibility. 

Collision intervention systems are primarily 
designed for low warning time collisions, 
which is a major vector of low visibility 
fatalities. Radar-based systems should not 
be affected significantly by low-visibility 
conditions such as rain. 

Depending on visibility conditions and type 
of sensors used, current DDA systems 
may automatically deactivate. It is possible 
that future DDA may mitigate the risks of 
low visibility driving by selecting routes that 
avoid major hazards. 
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Modifiers to Initial / Final  
With LDW: 0.30 / 0.40 
Without LDW: 0.30 / 0.40 

Modifiers to Initial / Final  
With LDW: 0.75 / 0.85 
Without LDW: 0.75 / 0.85 

Modifiers to Initial / Final  
With LKA: 0.85 / 0.90 
Without LKA: 0.70 / 0.90 

Modifiers to Initial / Final  
With LKA: 0.90 / 0.95 
Without LKA: 0.90 / 0.95 

Alerting is judged to be of little value in the 
types of crashes most common in adverse 
surface conditions as driver is assumed to 
be engaged in the driving task due to 
challenging conditions, thus the warnings 
are expected to be relatively less 
beneficial, with limited potential to improve 
with technological maturation. 

Alerting is judged to be of little value in the 
types of crashes most common in adverse 
surface conditions as driver is assumed to 
be engaged in the driving task due to 
challenging conditions, thus the warnings 
are expected to be relatively less 
beneficial, with limited potential to improve 
with technological maturation. 

Note these values only apply to crashes 
not preceded by loss of control/traction. 
Loss of control/loss of traction crashes 
were deemed not preventable by ADAS. 
Adverse surface conditions are expected 
to reduce system performance though not 
greatly in situations with no loss of traction; 
and there is room for improvement with 
technological maturation. 

Depending on visibility conditions and type 
of sensors used, current DDA systems 
may automatically deactivate. It is possible 
that future DDA may mitigate the risks of 
adverse surface conditions driving by 
selecting routes that avoid major hazards. 
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Modifiers to Initial / Final  
With LDW: 0.90 / 0.95 
Without LDW: 0.50 / 0.70 

Modifiers to Initial / Final  
With LDW: 0.90 / 0.95 
Without LDW: 0.50 / 0.70 

Modifiers to Initial / Final  
With LKA: 0.75 / 0.95 
Without LKA: 0.70 / 0.90 

Modifiers to Initial / Final  
With LKA: 0.80 / 0.95 
Without LKA: 0.80 / 0.95 

Most warning systems are not severely 
impaired by dim lighting or darkness. 
Since driver fatigue plays a major role in 
crashes occurring in darkness, alerts are 
particularly important in this scenario, 
potentially offsetting any decrement in the 
performance of the warning system itself. 

Most warning systems are not severely 
impaired by dim lighting or darkness. 
Since driver fatigue plays a major role in 
crashes occurring in darkness, alerts are 
particularly important in this scenario, 
potentially offsetting any decrement in the 
performance of the warning system itself 

Research has shown that some collision 
intervention systems perform less well in 
certain crash types in darkness (e.g., AEB 
in crashes with pedestrians). There is 
opportunity for improvement with 
technological maturity. LKA is of minimal 
relevance to non-lane-departure crashes 
in dim lighting but may help to avoid some 
other crash types that were preceded by 
an unintended lane departure. 

Deactivating lane-keeping features would 
functionally deactivate DDA, thus values 
for lower packages (without DDA) apply 
when LKA is deactivated. 
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Modifiers to Initial / Final  
With LDW: 0.50 / 0.80 
Without LDW: 0.50 / 0.80 

Modifiers to Initial / Final 
With LDW: 0.70 / 0.90 
Without LDW: 0.70 / 0.90 

Modifiers to Initial / Final 
With LKA: 0.75 / 0.95 
Without LKA: 0.75 / 0.95 

Modifiers to Initial / Final 
With LKA: 0.80 / 0.98 
Without LKA: 0.80 / 0.98 

Warning systems may issue false 
warnings or fail to activate in the presence 
of ad hoc changes to traffic patterns (e.g., 
lane shifts) or fail to activate if the visual 
environment is excessively complex. Ad 
hoc nature of road construction may limit 
the ability to overcome limitations with 
technological maturity. 

Warning systems may issue false 
warnings or fail to activate in the presence 
of ad hoc changes to traffic patterns (e.g., 
lane shifts) or fail to activate if the visual 
environment is excessively complex. Ad 
hoc nature of road construction may limit 
the ability to overcome limitations with 
technological maturity. ACC may help 
avoid rear-end crashes in stop-and-go 
traffic in work zone. 
 

AEB may be beneficial in work zones and 
its performance should not be reduced 
greatly. LKA is greatly limited by temporary 
lane markings, lane shifts, etc. 

Current systems often struggle in work 
zones, but there is opportunity for 
improvement with technological maturity. 
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Probability of system usec 
 Initial / Final 

LDW: 0.20 / 0.90 
All others: 0.80 / 0.90 

Initial / Final 
LDW: 0.05 / 0.90 
All others: 0.20 / 0.90 

Initial / Final 
LKA: 0.40 / 0.90 
All others: 0.80 / 0.90 

Initial / Final 
LKA: 0.10 / 0.90 
All others: 0.20 / 0.90 

Will vary by warning system. Research 
has shown that many drivers deactivate 
LDW but keep other warning systems 
active. 

ACC is likely to be used most frequently 
on long highway drives but infrequently in 
other contexts. Future systems may be 
used in a wider array of driving contexts as 
the technology matures. 

Research has shown that many drivers 
deactivate LKA but keep other collision 
intervention systems active. Also, many 
vehicles retain last setting for lane-keeping 
features but default AEB to on after every 
ignition on-off cycle, increasing probability 
that LKA will be deactivated but AEB will 
remain activated. Probability of use likely 
to increase with technological maturity. 
 

DDA is likely to be used most frequently 
on long highway drives but infrequently in 
other contexts. Future systems may be 
used in a wider array of driving contexts as 
the technology matures. Also note that 
these values include misuse and abuse of 
system, e.g., by using system outside of 
operational design domain. 

FCW: forward collision warning; LDW: lane departure warning; BM: blindspot monitoring; PD: pedestrian detection; ACC: adaptive cruise control; AEB: automatic 
emergency braking; LKA: lane keeping assistance; ESA: emergency steering assistance; DDA: dynamic driving assistance (i.e. simultaneous operation of ACC and LKA) 
 
a. Base effectiveness indicates proportion of crashes prevented by technology shown in column, assuming ideal conditions (absence of hazards that reduce system 
effectiveness). Lane-departure crashes and non-lane-departure crashes considered separately due to research indicating that consumers are more likely to deactivate lane 
departure warning and lane keeping assistance systems than other systems. 
b. Reduction in effectiveness of technology shown in column in the presence of the hazard indicated. When the hazard is present, the system effectiveness is multiplied by 
the value shown. A value of 1 indicates no reduction in effectiveness for the hazard listed; 0 indicates that the system has no effectiveness when the hazard is present. 
Lane-departure and non-lane-departure crashes considered separately. 
c. For ACC and DDA, probability of system use denotes the probability that the technology is engaged at any given time. For collision intervention systems (AEB, LKA), this 
represents probability that the system is turned on (not deactivated). For warning systems, this represents the probability that the system is turned on and that the driver is 
responsive to warnings. Probability of system use was modeled in a “step-down” approach such that if systems within a higher package were not in use, the effectiveness 
and probability of use of next lower system would apply. Within each package, lane-keeping features were considered separately from other features where applicable due 
to research indicating lower probability of use of lane-keeping features. 
d. Initial value represents value assumed in base year (2017). The final value represents value assumed in 2050 given anticipated technological maturity. Values in 
intermediate years were modeled as an “S-shaped” curve between initial value in the base year and final value in 2050. 
Effectiveness estimates were determined through literature reviews and discussions within the research team. The table briefly includes the research team’s collaborative 
thinking under each estimate. These data points represent best estimates at the time of this study; however, additional research is needed to refine these estimates, given 
the dearth of information on many of these technologies under these specific scenarios.  
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Appendix B. Parameter values used to model best estimate, high uptake & use, and 
low uptake & use scenarios. 

 
Parameter 

Best  
Estimate 

High  
Uptake & Use 

Low  
Uptake & Use 

Attractiveness weight 0.5 0.7 0.3 

Industry learning effectiveness 0.5 0.7 0.3 

Learning speed 0.1 0.5 0.02 

Initial perceived safety relative to actual safety 0.2 0.5 0.00 

Technology usage modifier 1 1.5 0.5 
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