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Foreword 

Vehicle technologies can now actively control parts of the driving task for extended periods 
of time, potentially allowing drivers to disengage from their driving responsibilities. It is 
imperative that we continue to assess how these new features can affect driver behavior 
and performance. This report summarizes an analysis of data from two Naturalistic Driving 
Studies using vehicles equipped with advanced driver assistance systems (ADAS). The 
outcomes shed insight regarding driver behavior while using ADAS versus driving under 
normal conditions and the safety implications.   

The results of this study should help researchers, automobile industry and government 
entities better understand driver-vehicle interactions and potential unintended 
consequences in vehicles with advanced technologies.  

 
 

 
C. Y. David Yang, Ph.D.  
 
Executive Director  
AAA Foundation for Traffic Safety 
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Executive Summary 

Few studies exist to help assess whether drivers of vehicles equipped with advanced driver 
assistance systems (ADAS) experience a change in crash risk specific to the use of these 
automated features. The objectives of this study are to 1) Investigate driver behavior and 
the associated risks of ADAS use; 2) Fill a critical knowledge gap by providing information 
regarding the potential for changes in driver error, drowsiness, secondary task engagement 
(STE), and eye-glance behavior (e.g., surrogates for distracted driving behaviors) relative to 
ADAS use; and 3) Investigate changes in safety-critical event (SCE; i.e., crash or near-
crash) risk related to the use of ADAS.  

Two naturalistic driving studies (NDSs) — the Virginia Connected Corridors Level 2 NDS 
(VCC L2 NDS) and the Level 2 Mixed Function Automation NDS (L2 MFA NDS) —  
focusing on vehicles equipped with advanced automation features (i.e., adaptive cruise 
control [ACC], lane-keep assist [LKA], and Level 2 [L2, or ACC and LKA] automation), 
were used to inform the results of the investigation.  

Drivers for both the VCC L2 NDS and the L2 MFA NDS were recruited from the Northern 
Virginia, Washington D.C., and Maryland areas, based on daily driving habits and driving 
history, among numerous other selection criteria. The VCC L2 NDS was a 12-month field 
evaluation of 50 participant-owned vehicles. Vehicle makes and models varied, but all VCC 
L2 NDS vehicles included in this study had a combination of ACC and LKA functionality. 
The L2 MFA NDS comprised 120 participants, each assigned to an L2-equipped study 
vehicle for four weeks, resulting in 120 months of driving data. Due to the large quantities 
of data collected during both NDSs, analyses conducted for the current study were based on 
sampled epochs of baseline driving, which may be defined as “ordinary” driving not tied to a 
specific event (e.g., a crash or near-crash). These baseline epochs were selected based on 
ADAS status (e.g., L2 active or none active).  

The sampling strategy used varied between the two studies. The VCC L2 NDS used a 
matched baseline sampling strategy, whereby baseline epochs selected when ADAS were 
active were matched to a corresponding epoch where the same system was available but not 
active. For example, an L2 active epoch was matched to an epoch where L2 was available 
but not active. Baseline epochs were also matched by driver, day of the week, time of day, 
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and vehicle speed to account for variability in driver behavior resulting from such factors. 
To avoid oversampling from any one trip, only one baseline epoch was sampled in the VCC 
L2 NDS from each trip. Sampling for the L2 MFA NDS was also based on ADAS status. 
However, the strategy was different, as the L2 MFA NDS did not use a matched sampling 
strategy. Rather, a baseline epoch was sampled from every period of ADAS activation 
during every trip when the vehicle speed was above 40 mph and lane markings were visible 
(i.e., verified by a trained data reductionist). This approach resulted in a much larger 
baseline data set. However, such sampling did not control for variability among drivers or 
driving scenarios. Due to the differences in sampling among the NDSs, separate analyses 
were conducted on the two data sets. For the VCC L2 NDS, comparisons were made 
between ADAS active and ADAS available but not active (e.g., L2 active was compared to 
L2 available; ACC active was compared to ACC available). For the L2 MFA NDS, 
comparisons were made between different levels of ADAS activation (i.e., L2 active was 
compared to L1 active and none active). 

Driver behaviors were combined into two categories due to low numbers. Performance 
errors included a variety of vehicle operation and maneuvering errors, such as failing to 
signal or an improper turn. There were relatively few performance errors in either NDS 
data set. The prevalence of performance error occurring during a trip was 1.6% to 1.7% 
across both data sets, which was lower than the 4.8% found in overall analyses of the 
Second Strategic Highway Research Program (SHRP 2) NDS (Dingus et al., 2015). 
Conversely, the prevalence of judgment errors, which were operationally defined to include 
aspects of a momentary lapse of judgment by the driver (Dingus et al., 2016), was higher in 
the current study than that found in Dingus et al. (2016). However, this difference likely 
stems from a higher occurrence of exceeding the speed limit (≥ 10 mph over the posted 
speed) by drivers in both the VCC L2 NDS and L2 MFA NDS. When both ACC and LKA 
(i.e., L2) were available but not in use (i.e., active) in the VCC L2 NDS, the prevalence of a 
judgment error was 17.5%. However, this decreased to 11% with L2 active. Conversely, 
speeding in the L2 MFA NDS was significantly higher when L2 was active compared to 
when no systems were active (19% versus 16%, respectively), indicating that drivers 
exceeded the speed limit more frequently when using both lateral and longitudinal 
automation features simultaneously.   
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Observation of drowsy driving in the VCC L2 NDS was low, with only four trips (0.6%) 
indicating signs of driver drowsiness. Drowsy driving was present in a higher percentage of 
L2 MFA NDS baselines, most notably when both systems were active (5.4%), indicating a 
possible detrimental effect of automation use associated with driver underload. When 
looking specifically at possible drowsiness-related SCEs, the number of valid events was too 
low to form any conclusions based on the available data.  

The results from the VCC L2 NDS indicate that the use of lateral and longitudinal ADAS 
(i.e., L2 automation) culminated in increased occurrence of distracted driving behaviors. 
Drivers with L2 active had 1.8 times the odds of engaging in a visual, manual, or visual-
manual secondary task than when L2 was available but not active. When VCC L2 NDS 
drivers were involved in a secondary task with L2 active, they spent almost 30% of the time 
with their eyes off the forward roadway. In addition, drivers with L2 active took more 
frequent and longer duration non-driving-related task glances, subsequently spending less 
time with their eyes on driving-related tasks. Interestingly, drivers from the L2 MFA NDS 
did not display the same tendency toward distracted driving behaviors when automation 
systems were active. Instead, they were more likely to engage in a secondary task and take 
their eyes off the road when they were driving with no ADAS engaged (i.e., under periods of 
manual driving), possibly indicating a lack of trust in the systems.  

These results — and the differences between the data sets used — may suggest the 
possibility of several phases of driver interaction with automated systems. The authors 
therefore propose a three-phase model of ADAS operation, comprising a “novelty” phase, a 
post-novelty operational phase, and an experienced user phase. The novelty phase includes 
learning and testing the ADAS in real time to understand limitations and capabilities. 
Trust in the ADAS may be lacking during this phase as the driver has little to no 
experience with the automation features. Once drivers move from the novelty phase to the 
post-novelty operational phase, behavioral adaptation may begin to occur, and overreliance 
and over-trust in the automation features may develop. The post-novelty phase is also when 
driver awareness of the limitations of the ADAS features ideally evolves to avoid an 
increase in SCEs associated with risky behaviors, such as distracted driving. Drivers then 
move to the experienced user phase, wherein overreliance and work underload may 
manifest in the form of drowsiness or inattention. 
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These results, ideally, will help raise awareness among drivers of the potential pitfalls they 
may experience throughout all phases of ADAS operation, from inexperience and initial 
system use to experienced use. To help mitigate such drawbacks of system use, 
comprehensive training for drivers purchasing ADAS-equipped vehicles may have a 
positive outcome. Additionally, every ADAS-equipped vehicle currently operates differently 
across functionality, ADAS activation, capabilities, and operating speeds, resulting in a 
learning curve each time a driver uses a different system. As such, standardization to a 
greater degree may also be beneficial in that it will limit the impact of novelty symptoms.  
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Introduction 

The ultimate goal of advanced driver assistance systems (ADAS) is to increase road safety 
and driving comfort. These systems help with monitoring, braking, and steering tasks and 
alert the driver when corrective or evasive action is required. Several studies have 
estimated the impact of a range of ADAS on crashes, injuries, and deaths on U.S. roads, 
including forward collision warning (FCW), automatic emergency braking (AEB), lane 
departure warning (LDW), and blind spot warning (BSW) systems (Cicchino, 2017a; 2017b; 
2017c; Benson et al., 2019).  

The development of specific ADAS has aided in the evolution of semi-automated and 
automated vehicles. Generally speaking, adaptive cruise control (ACC) and lane-keep assist 
(LKA, or lane centering) are the two fundamental systems required for advancement of 
autonomous vehicles. As these systems that control the longitudinal and lateral movement 
of the vehicle become more advanced and refined, they can more reliably and consistently 
assume control of the driving task from the operator. However, new advances in vehicle 
technologies and rapid deployment of these advanced systems in vehicles already on the 
road leave unanswered questions about their impact on driver behavior. Specifically, as 
drivers are removed from the driving task for periods of time, their ability to retake control 
of the vehicle in the event of automation failure becomes questionable.  

Recent automated-vehicle studies (e.g., Schoettle & Sivak, 2015; Blanco et al., 2016) have 
attempted to determine crash risks relative to semi-automated and autonomous vehicles. 
However, research conducted thus far is limited and provides only a narrow snapshot of 
what may occur when these vehicles are more widely deployed in the future. Few studies 
have been conducted to discover whether drivers of such vehicles will experience increased 
crash risk specific to the use of ADAS. But the evidence so far points to the need for more 
studies.  

For example, one study measured drivers’ willingness to engage in secondary tasks and 
their visual performance while operating an L2 automated system (Llaneras et al., 2013). 
The study found that, when operating under a vehicle capable of automated steering and 
maintaining speed and headway, engagement in secondary tasks increased. The length of 
drivers’ off-road glances also increased, and they diverted their attention from the forward 
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roadway more than 30% of the time. An earlier study by Rudin-Brown and Parker (2004) 
focusing on ACC found that drivers performed significantly better on a secondary task 
when using ACC, while their response time to hazard detection increased. The authors 
suggested that such results were due to behavioral adaptation to the system. A recent 
survey of owners of vehicles equipped with ADAS found that approximately 30% indicated 
they were comfortable engaging in non-driving-related tasks when ACC was activated 
(McDonald et al., 2018).  

A key concern when considering the widespread adoption of these advanced automation 
features is that of behavioral adaptation. Evolutionarily speaking, humans adapt as they 
learn; thus, when presented with new technologies, the driver will learn and adapt to using 
these technologies over time and under changing conditions. Behavioral adaptation can 
implicate psychological factors, such as motivation, emotions, personality traits, and 
decision-making that inform how an individual will respond to the change (Vaa, 2013). The 
Organization for Economic Co-operation and Development (OECD, 1990) defines behavioral 
adaptation as “the collection of behaviors that occurs following a change to the road traffic 
system that were not intended by the initiators of the change”. Behavioral adaptation, 
including the related concept of risk compensation, has been postulated by numerous 
researchers as a contributing factor to changes in driver behavior following the introduction 
of road-safety measures, such as antilock brake systems (Vaa, 2013), airbags (Peterson & 
Hoffer, 1994), and seatbelts (Calkins & Zlatoper, 2001). The implementation of safety 
countermeasures does not occur in a vacuum, especially when humans are involved; thus, 
addressing one problem in a system has the potential to result in unintended consequences 
due to behavioral adaptation. 

The development of behavioral adaptation involves two phases: the learning phase and the 
integration phase (Saad et al., 2004). In regard to the introduction of new technology, such 
as ADAS, the learning phase involves the driver initially becoming acquainted with the 
systems and learning their uses and limitations. Learning the limitations can be 
accomplished formally by instruction. However, learning to use the systems in real-world 
scenarios will largely occur organically as different driving scenarios are encountered. The 
integration phase occurs once the driver is past the initial learning phase and has 
incorporated the system use in everyday driving (Saad et al., 2004). Thus, behavioral 
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adaptation takes time as drivers move through these phases of learning and integration. As 
a result, to better understand the process and development of behavioral adaptation to 
ADAS and the long-term impact on driver behavior, studies ideally should investigate 
ADAS use over an extended period of time. 

A critical issue relative to behavioral adaptation and specific to ADAS use is that drivers 
may divert their attention away from the driving task to engage in secondary, non-driving-
related tasks. This could have dire consequences should the ADAS fail or become inactive, 
meaning the driver needs to quickly redirect his/her attention back to the road and resume 
manual control of the vehicle (Sullivan et al., 2016). If the driver is distracted and has 
his/her attention on a non-driving-related task, then the operator will not be prepared to 
intervene in the event of automation failure. For example, numerous studies have indicated 
that the combination of ACC and active steering results in longer response times, increased 
hard braking, and more collisions or near collisions when automation fails, as compared to 
manual driving (Strand et al., 2014; Merat et al., 2014; de Winter et al., 2014). Conversely, 
a recent study focusing on Tesla drivers’ behavioral adaptation by Lin et al. (2018) found 
that, while drivers universally engaged in secondary tasks under automated driving 
conditions, these drivers also reported learning from their experiences with the vehicles to 
identify “safe” scenarios, as well as adopting a margin of safety to avoid excessive risk. It 
should be noted that this was behavior self-reported in a semi-structured interview, so real-
world behavior may be different.  

The Massachusetts Institute of Technology (MIT) is currently undertaking a large-scale 
real-world driving data collection effort called the MIT Autonomous Vehicle Technology 
(MIT AVT) study, which focuses on driver behavior and interaction with advanced vehicle 
automation (Fridman et al., 2017). While this research is ongoing, initial results from a 
subset of the MIT AVT data examining the Tesla Autopilot feature relative to driver 
vigilance indicated that drivers did not over-trust the system and remained functionally 
vigilant during use of the Autopilot feature (Fridman et al., 2019). Drivers either performed 
anticipatory actions or responded immediately to what the researchers categorized as 
“tricky situations,” meaning challenging scenarios that required input from the driver to 
maintain safe operation of the vehicle, resulting in disengagement of the Autopilot feature. 
These results, though surprising and contrary to what would be expected if behavioral 
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adaptation occurred among this subset of drivers, are nonetheless preliminary. It therefore 
remains imperative in transportation research to investigate potential over-trust and 
overreliance on ADAS as these issues could mitigate some of the safety benefits of these 
advanced automation features (Inagaki & Itoh, 2013). 

In addition to behavioral adaptation, the use of automation features that remove sources of 
workload from the driver may create issues associated with mental underload. Reducing 
mental workload may be helpful, to a point. However, reducing it too much has been shown 
to negatively impact driver performance (Nachreiner, 1995; Young & Stanton, 2002). 
Underload occurs when the task demands are relatively low and the driver does not need to 
mobilize too many cognitive resources, or mental effort, to maintain performance (Gimeno 
et al., 2006). Young and Stanton (2004; 2006) conducted a series of studies on the impact of 
automation on workload and driver performance and found higher levels of automation 
(e.g., ACC) were associated with significantly lower workload and poorer response times (1-
1.5 s slower) to unexpected automation failure. Underload has also been linked to monotony 
and fatigue. In a separate simulator study investigating the detrimental effects of passive 
task-related fatigue (i.e., fatigue associated with monotonous, low-demand driving), 
Matthews et al. (2009) found drivers were slower to respond to an unexpected hazard and 
were more likely to collide with the hazard. Thus, while there are safety benefits associated 
with ADAS, there may also be associated underload and fatigue-related declines in driver 
performance that need to be investigated.  

Finally, many of these advanced safety systems have limitations and specific conditions 
under which they are designed to operate optimally. Unfortunately, owners of vehicles 
equipped with these advanced safety systems typically lack awareness of the key 
limitations of these technologies. A recent survey of registered owners of vehicles equipped 
with various ADAS found more than three-quarters of owners of vehicles with blind spot 
monitoring systems had misconceptions about its function or were unsure of the system 
limitations. In addition, one-third of respondents whose vehicles had AEB systems did not 
realize the sensors and cameras on which the system relies could be blocked or obstructed 
by dirt, snow, or ice (McDonald et al., 2018).    

The majority of studies investigating various safety factors related to the use of ADAS have 
been simulator or test-track studies with instrumented vehicles. These studies have the 
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advantage of keeping participants safe, but their external validity may be questioned 
because of the controlled environment. To help address the disadvantages of such studies, 
the Virginia Tech Transportation Institute (VTTI) created the naturalistic driving study 
(NDS) method to continuously capture video and other in-depth data from key-on to key-off 
in drivers’ personal vehicles, or in leased vehicles provided to participants, without an 
experimenter present. The outcomes provided robust information about real-world driver 
behavior and performance leading to safety-critical events (SCEs; e.g., Dingus et al., 2006; 
2015; Fitch et al., 2013; Klauer et al., 2010). SCEs include crashes, wherein the vehicle 
makes contact with another object, and near-crashes, wherein a crash is avoided by an 
evasive maneuver (Guo & Fang, 2013).  

Naturalistic driving data also comprise ordinary, or baseline, driving during which no SCEs 
occur. Because detailed information about driver behavior and the surrounding 
environment is available before, during and after a crash – and during ordinary driving, 
naturalistic data can help overcome significant pre-crash behavioral limitations of 
epidemiological studies. For example, VTTI recently investigated the crash risk associated 
with cognitive distraction and drowsy driving (Dingus et al., 2019). In this study, the 
authors examined a sample of data from more than 3,500 drivers in the Second Strategic 
Highway Research Program (SHRP 2) NDS to determine the prevalence of engagement in 
tasks involving cognitive distraction (i.e., tasks with limited visual-manual demands, such 
as interacting with a passenger) across events in which crashes occurred and in comparison 
to baseline (non-crash, ordinary) driving. Results of the study indicated that engagement in 
some secondary tasks associated with cognitive distraction had an increase in crash risk 
when compared to baseline driving. The authors also found a significant increase in crash 
risk relative to drowsy driving, which was identified using percentage of eye closure 
(PERCLOS), or the percentage of time the driver’s eyes were closed more than 80% across 
one- or three-minute periods. 

Additionally, naturalistic driving data can be used to assess various eye-glance metrics that 
act as surrogates for driver distraction. Eye-glance locations are coded according to whether 
they are on-road or off-road and related to a driving task (e.g., checking mirrors) or a non-
driving-related task (e.g., looking at a cell phone). Numerous eye-glance metrics have been 
shown in past studies to be associated with crash risk. For example, Klauer et al. (2006) 
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found that, when the driver’s eyes were off the forward roadway for longer than a total of 2 
seconds (i.e., total cumulative eyes-off-road duration > 2 seconds), the driver’s crash/near-
crash risk doubled. Additionally, the authors found the number of glances away from the 
forward roadway and the duration of the longest glance increased as the severity of the 
SCE increased. Dingus et al. (2016) also found evidence that activities requiring eyes-off-
road time resulted in a higher crash risk. Distracting visual-manual activities — such as 
texting on a handheld cell phone, dialing a number on a handheld cell phone, and reaching 
for an object — were all associated with increased crash risk. 

Using the NDS method, VTTI collected naturalistic driving data from ADAS and Level 2 
(L2) automation-equipped vehicles. In the current study, the resulting database of 
continuous naturalistic driving data was mined and analyzed to determine if ADAS have 
unintended consequences on driver safety. This offers a chance to investigate how drivers 
use ADAS in real-world conditions and whether these systems have a detrimental effect on 
driver behavior. This study is exploratory in nature and aims to fill a critical knowledge gap 
regarding driver risk in relation to ADAS use. As a result, the research questions cover a 
broad range of topics, including driver behavior, secondary task engagement (STE), and 
driver drowsiness. The goal is to provide a better understanding of possible changes in 
driver risk due to distraction, fatigue, and other factors.  

Research Questions 

The research questions for this study are listed below. Each research question is addressed 
using the two NDS data sets, which are described in the Methods chapter.  

1. What driver behaviors are observed when ADAS are active? 

2. Do unsafe driver behaviors occur more frequently when ADAS are active? 

3. Does STE occur more frequently when ADAS are active? 

4. Do the characteristics of SCEs change when ADAS are active? 

5. Do SCE rates differ when ADAS are active? 

6. Is there an increased prevalence of STE during SCEs that occur when ADAS are 
active? 
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7. Do drivers spend more time with their eyes off the forward roadway when ADAS are 
active? 

8. When engaged in a secondary task, do drivers take longer glances away from the 
roadway when ADAS are active? 

9. In general, do drivers engage in less scanning of the roadway environment when 
ADAS are active? 

10. Is driver drowsiness observed more often when ADAS are active? 

11. Is driver drowsiness more prevalent during SCEs that occur when ADAS are active? 

12. How do drivers respond to ADAS alerts? 

13. How long does it take drivers to respond to ADAS alerts? 

14. Is driver drowsiness more prevalent when drivers receive ADAS alerts? 
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Methods 

Vehicles and Equipped ADAS 

Data for this study were derived from two naturalistic driving data collection efforts using 
vehicles equipped with longitudinal and lateral ADAS: 1) The L2 Mixed Function 
Automation (MFA) NDS and 2) the Virginia Connected Corridors (VCC) L2 NDS. Vehicles 
used in both studies were equipped with varying driving automation systems, which were 
reflective of market availability at the time of data collection. Individual systems differed in 
terms of their functionality and capabilities (across vehicle make and manufacturer). 
However, all vehicles in the study allowed drivers to simultaneously activate longitudinal 
and lateral automation systems (i.e., L2).  

Longitudinal automation features are commonly referred to as Adaptive Cruise Control 
(ACC) systems. When activated, ACC automatically adjusts the speed of the vehicle to 
maintain a safe following distance from a lead vehicle. Following distance, also called 
headway, can usually be set manually, from one car length to three or four car lengths. 
Lateral automation (i.e., lane-keeping) features differ across vehicle make and model and 
are largely based on whether the lane-keeping system is proactive or reactive. Lane-Keep 
Assist (LKA) is a reactive system that will steer the vehicle back into the designated lane if 
it begins to drift over the road’s lane markings. LKA systems also typically include Lane 
Departure Warning (LDW) features, whereby the driver is provided with alerts (i.e., 
audible, visual, and/or tactile) if the vehicle drifts over lane markings. Conversely, lane 
centering is a proactive lane-keeping system that monitors lane markings and provides 
steering input to actively keep the vehicle in the center of the detected lane (Motor1.com, 
2019).  

Due to variety in the study vehicles equipped with ADAS, longitudinal automation features 
will generically be referred to herein as ACC. Given the broad array of vehicles included 
and the exploratory nature of the current study, both proactive and reactive lane-keeping 
(lateral automation) systems are grouped together and referred to collectively as LKA. 
Functionality achieved when ACC and LKA are activated simultaneously will be referred to 
as L2 active. It should be noted that true L2 automation, as defined by SAE International 
(2018), requires proactive lane-keeping systems, such as lane-centering, which perform part 
of the dynamic driving task on a sustained basis (i.e., the driver is relieved of his/her role in 
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steering the vehicle). Reactive LKA systems, with which several of the vehicles in the VCC 
L2 NDS were equipped, only provide momentary action as a response to potentially 
hazardous situations (i.e., the driver is not relieved of his/her role in steering the vehicle). 
Thus, while these are active safety systems, they are not considered to be driving 
automation (SAE International, 2018).       

Regardless of individual vehicle capability, all features available on each vehicle included in 
this study required active monitoring from the driver and intervention when and where 
necessary. The lateral automation features, regardless of whether they were proactive or 
reactive LKA systems, required the driver’s hands to be on the wheel. There were also 
conditions in which the ADAS were not intended to be used, which were consistent across 
all vehicles. These typically included conditions that would result in poor visibility, such as 
fog, heavy rain, or snow. A main difference between study vehicles and equipped ADAS 
features was whether LKA could be activated independently of ACC. Some vehicles, such as 
Tesla, require ACC to be activated prior to the engagement of LKA, meaning the driver can 
only have ACC active or both systems active, but not LKA alone. Other vehicles allow ACC 
or LKA or both to be activated. Table 1 provides a breakdown of the vehicles and equipped 
ADAS features included in the VCC L2 NDS and L2 MFA NDS. 
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Table 1. VCC L2 NDS and L2 MFA NDS vehicles and breakdown of ADAS features.  

      ACC LKA 
 

     Operating 
Speed (mph) 

Operating 
Speed (mph) 

VC
C

 L
2 

N
D

S 

Vehicle Make/Model N L2 ACC LKA Min Max Min  Max 

2015 Tesla Model S 3 X X X 18 90 30 85 

2016 Tesla Model S 8 X X X 18 90 30 85 

2017 Tesla Model X 1 X X X 18 90 35 90 

2014 Acura MDX 1 X X X 25 -- 45 90 

2015 Acura TLX 2 X X X 25 -- 45 90 

2016 Acura RDX 2 X X X 25 -- 45 90 

2015 Ford Fusion 1 X X X 16 -- 40 -- 

2017 Ford Fusion 1 X X X 16 -- 40 -- 

2016 Honda Accord 2 X X X 25 -- 45 90 

2017 Honda Accord 2 X X X 25 -- 45 90 

2015 Hyundai Genesis 2 X X X 20 110 40 110 

2016 Hyundai Genesis 1 X X X 20 110 40 110 

2017 Chrysler Pacifica 1 X X X 20 -- 37 112 

2014 Jeep Cherokee 1 X X X 20 -- 37  112  

2016 Hyundai Sonata 2 -- X LDW 20 110  N/A N/A  

L2
 M

FA
 N

D
S 

2015 Tesla Model S 2 X X X 18 90 30 85 

2017 Audi Q7 2 X X X 20 95 40 -- 

2015 Infiniti Q50 2 X X X 20 90 45 -- 

2016 Mercedes E350 2 X X X 20 120 37 120 

2016 Volvo XC90 2 X X X 20 125 40 -- 

Note: Dashes indicate there is no maximum operating speed for the ADAS feature.  

Study Sample 

VCC L2 NDS 

For the VCC L2 NDS, 50 participants were recruited from the Northern Virginia and 
Washington, D.C., areas. Due to vehicle variability and dash icon arrangement or design, a 
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subset of 30 participants was used for this study. Participants were required to own or lease 
a vehicle with at least ACC functionality, as well as meeting the following criteria:  

• Must be at least 18 years of age and have at least two years of driving experience 

• Must regularly drive (i.e., two to three days per week) on Interstate 66, U.S. 29, U.S. 
50, or Interstate 495 in the Northern Virginia or Washington, D.C., area 

Data collection for the study took a total of 20 months, from November 2016 to June 2018, 
with approximately one year of data collected for each participant. Of the 30 participants 
used in the current study, the majority were male (22 males and eight females). There was 
a wide age range, with eight participants between 25 and 39 years of age, 15 participants 
between 40 and 54 years old, and seven participants between 55 and 77 years of age. 

Since participants used their own vehicles during the VCC L2 NDS, there was no specific 
training on how and when to use the ADAS. It was assumed that participants would drive 
as they normally would and used the systems if, and when, they chose. Responses to a 
questionnaire completed upon enrollment in the study indicated these participants were 
familiar with the ADAS and trusted the systems in their vehicles. 

Participants were compensated at a rate of $300 per month of participation up to a total of 
12 months per participant. An additional payment of $125 was made to each participant 
following installation of a data acquisition system (DAS) in their vehicles and again once 
the DAS equipment was removed from their vehicles. Thus, a participant enrolled in the 
study for a full year was compensated $3,850 for his/her participation. 

L2 MFA NDS 

Participants in the L2 MFA NDS were recruited from the Washington, D.C., area, which 
included both Northern Virginia and Maryland suburbs. For the L2 MFA NDS, participants 
were provided a study vehicle equipped with ADAS. Participants were selected based on the 
following criteria:  

• Must drive at least 60 miles per weekday 

• Must not have driver’s license suspension within the last seven years and must 
agree to submit to a driving history check 
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• Must not have been convicted of more than two driving violations or been involved in 
an at-fault crash causing injury within the past three years 

• Must own and use a smartphone with Bluetooth capability 

A total of 120 participants completed the study. Each participant was assigned to one of 10 
study vehicles, resulting in 12 participants per vehicle. This study was designed to balance 
participants across age and gender classifications for each vehicle. The age group 
classifications were 25 to 39 years old and 40 to 54 years old. Of the 12 participants per 
vehicle, six were in the 25- to 39-year-old age group (three males and three females), and 
six were in the 40- to 54-year-old age group (three males and three females). 

Data were collected for a total of 16 months, from September 2016 to December 2017, with 
each participant enrolled for a period of four weeks. Since participants were assigned a 
study vehicle, it was not assumed they had prior experience using a vehicle equipped with 
any ADAS features (e.g., ACC or LKA). Thus, all participants received an orientation to 
their assigned vehicle, as well as training regarding the use of the driving automation 
system features. Training comprised a static orientation of all basic vehicle controls (e.g., 
seat adjustment, windshield wipers), comfort features (e.g., seat warmers, navigation and 
entertainment systems), and driving automation system features (e.g., ACC and LKA). This 
included verbal instruction on the location and operation of all associated buttons, levers, 
and alerts (i.e., auditory, visual, and haptic). After the static orientation, the participant 
was taken on a two-part test drive, whereby the researcher first drove and demonstrated 
the vehicle automation features, then the participant took over driving. The test drive was 
considered complete once the researcher had answered all of the participant’s questions and 
the participant indicated he/she felt comfortable driving the study vehicle with the driving 
automation features. The orientation and training session took approximately 1.5 hours. 
Participants also completed several self-report questionnaires, one of which asked about 
their previous experiences with ADAS. The majority of participants reported they had little 
to no direct experience with any driving automation systems. Survey results showed that 
63% had heard of an “automated vehicle system” of some type.  

Participants were compensated up to $500 based on total mileage driven and questionnaire 
completion. No monetary incentive was provided to use the driving automation systems.  
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Naturalistic Driving Data Sets 

The two NDS data sets used in this study were produced by equipping each study vehicle 
with the VTTI NextGen DAS – the same system used in the SHRP 2 NDS (Dingus et al., 
2015). The DAS used unobtrusive video cameras and vehicle sensors to continuously collect 
and store driving-related data. Five cameras installed in the vehicle provided views of the 
forward roadway, the driver’s face, an over-the-shoulder view of the driver’s hands and lap, 
the foot well (i.e., the accelerator and brake), and a rear view (Figure 1). The DAS also 
recorded vehicle data, including speed, acceleration, brake application, lane position, and 
GPS coordinates. A sixth camera was installed specifically to capture a view of the 
instrument panel (Figure 2), which provided information related to ADAS status. 

 

Figure 1. Data Acquisition System camera views 
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Figure 2. Example of an instrument panel camera view 

A VTTI-developed machine-learning algorithm was used to determine the ADAS status of 
each study vehicle at any given point during a trip. This algorithm was based on image 
classification using deep neural networks, specifically ResNet-18 architecture (He et al., 
2015). A training set of images was created for each vehicle make and model used in the 
current study. The images depicted dash icons representing each different ADAS status 
assessed in the current study (i.e., ACC active, ACC available, LKA active, LKA available, 
L2 active, L2 available). Six vehicles from the VCC L2 NDS were excluded from the study 
as a result of poor post-training accuracy when tested on the validation data sets. This was 
typically due to multiple dash icons appearing in the same location or the style or size of the 
icons, all of which contributed to higher false-positive rates or a misclassification of ADAS 
status. The resulting trained model was then applied to video collected by the instrument 
panel camera, which in turn produced time-series data for each vehicle that indicated 
ADAS status. 

Data Sampling and Reduction 

NDSs provide large amounts of continuous data recorded while study participants are 
driving. To create a manageable data set that can be investigated and analyzed, these data 
need to be sampled to identify epochs of interest. These epochs are then inspected by 
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trained data reductionists and coded to allow for comparison of driver-, environment-, 
roadway-, and vehicle-related variables. Three groups of epochs were gathered to inform 
different research questions: baseline epochs, safety critical event (SCE) epochs, and alert 
epochs. Sampling of baselines varied between the two NDS data sets. 

VCC L2 NDS Sampling 

For the VCC L2 NDS, driving epochs of 10 seconds were identified based on driver and 
ADAS activation, then matched with a corresponding epoch from the same driver where the 
same system was available but not active. For example, if Driver #1 had ACC active, a 
corresponding epoch from Driver #1 was identified where ACC was available but not active. 
Similarly, if Driver #5 had both ACC and LKA systems (i.e., L2) active, this was matched to 
a corresponding epoch from Driver #5 where both systems were available but not active. 
Baseline epochs were also matched by:  

• Driver; 

• Day of the week (i.e., weekday or weekend);  

• Time of day (i.e., 6 am-9 am, 9 am-4 pm, 4 pm-7 pm, 7 pm-11 pm, 11 pm-6 am); and 

• Vehicle speed above 20 mph but within +/- 5 mph. 

The initial study plan was to randomly sample an equal number of baseline epochs from 
each driver, which were matched based on ADAS status. The sampling approach was as 
follows: 

• 16 matched pairs for L2 active (i.e., eight epochs of L2 active matched with eight 
epochs of L2 available but not active); 

• 8 matched pairs for ACC active (i.e., four epochs of ACC active matched with four 
epochs of ACC available but not active); 

• 8 matched pairs for LKA active (i.e., four epochs of LKA active matched with four 
epochs of LKA available but not active). 

In practice, these numbers were not observed in all cases for all vehicles in the VCC L2 
NDS. The LKA active group was decidedly lower than originally planned as some of the 
vehicles (e.g., Tesla) do not allow for activation of LKA independently of ACC (i.e., ACC 
must be active before LKA can be activated). In these instances, the sampling approach was 
adjusted, and the number of ACC active epochs was doubled to 16 matched pairs when 
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available (i.e., instead of eight). Table 2 provides a summary of the planned sampling 
approach versus the total epochs sampled in the VCC L2 NDS. 

Table 2. Summary of planned sampling approach and final total number of epochs in the 

VCC L2 NDS. 

ADAS Status Planned Number of 
Epochs Actual Number 

L2 Active 240 200 

L2 Available 240 200 

ACC Active 120 133 

ACC Available 120 133 

LKA Active 120 71 

LKA Available 120 71 

Total 960 808 

 

The matched baseline sampling strategy was designed to obtain data from each driver 
engaged in each ADAS status—regardless of their time in any one ADAS status—while 
controlling for potentially confounding factors by matching samples of certain conditions. 
This sampling plan was not designed to be representative of all possible driving scenarios 
or representative of time spent in each ADAS status. This study and sampling method were 
designed instead to give all drivers equal weight, allowing equal influence among different 
user types on the understanding of how ADAS status may affect driving behaviors. This 
matched sampling strategy accounted for variability between drivers, in general, and 
between drivers in different scenarios. As such, driver behavior varied between individual 
drivers in different types of traffic (e.g., commuting to work versus weekend driving), at 
different times of the day (e.g., driving late at night versus in the middle of the day), and at 
different vehicle speeds (e.g., driving at 70 mph on an interstate versus driving 30 mph on a 
residential street).  

In addition to the matching criteria above, only one baseline epoch was sampled from each 
trip in the VCC L2 NDS. This avoided potential pitfalls associated with oversampling from 
any one particular trip. For example, if a driver was highly fatigued during one particular 
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trip and 10 baseline epochs were sampled from that trip, it may give an overrepresentation 
of the prevalence of driver drowsiness.  

Established kinematic algorithms developed in previous NDSs (e.g., Blanco et al., 2016; 
Dingus et al., 2006; Fitch et al., 2012; Hanowski et al., 2008; Simons-Morton et al., 2011) 
were used to identify potential SCEs. The algorithms identified rapid longitudinal 
decelerations, rapid lateral accelerations, short time-to-collisions, and substantial swerving. 
Trained data reductionists then inspected the videos associated with these events to verify 
the occurrence of an SCE. All verified SCEs (i.e., crashes and near-crashes) from each data 
set were included in the analysis (see Table 3). 

Along with SCEs and matched baselines, three different kinds of alerts—FCW, immediate 
takeover, and hands-on-wheel (HOW)—were sampled from the Tesla vehicles in the VCC 
L2 NDS (see Figure 3 for an example of each alert type). The Tesla was chosen because the 
dash icons for each alert were the most easily identified by the machine vision algorithm. In 
addition, these types of alerts may not occur frequently; thus, since there were 12 Teslas in 
the VCC L2 NDS, using the Tesla maximized the potential to identify these alerts. 
Different vehicle makes and models use different criteria to determine what constitutes an 
event requiring an alert; hence, using alert data from multiple different vehicular makes 
and models would have produced mixed results.  

 

Figure 3. Examples (from left to right) of Forward Collision Warning (FCW), Immediate 
Takeover, and Hands-on-Wheel (HOW) alerts in the VCC L2 NDS 
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FCW relates to longitudinal vehicle control and warns the driver when he/she is too close or 
closing too quickly to the lead vehicle. Immediate takeover alerts relate to lateral vehicle 
control and warn the driver when he/she needs to assume steering of the vehicle. HOW 
prompts occur when the vehicle senses the driver does not have his/her hands on the 
steering wheel and prompts the driver to place his/her hands on the wheel (see Table 3 for 
summary of all alert epochs).  

Table 3. Total epochs (SCEs and sampled alerts) for the VCC L2 NDS. 

Epoch Total 

SCEs 159 

Alerts 

FCW 63 

Immediate Takeover 61 

HOW Prompt 391 

 

L2 MFA NDS Sampling 

A different strategy was used for baseline sampling of the L2 MFA NDS. All periods in 
which ADAS were active and ADAS were available, but not active, were identified using 
vehicle network information or the VTTI-developed machine-learning process. Baseline 
epochs were only sampled when the vehicle was traveling above the speed required for 
activation of the driving automation features, which was designated as 40 mph in the L2 
MFA NDS, and the vehicle was traveling on a road with visible lane markings (i.e., verified 
by trained data reductionists). Using these criteria, baseline epochs of 15 s were selected 
from every period of system activation or availability within every trip, based on whether 
both ACC and LKA systems were active (i.e., L2 active), one system was active but L2 was 
available (i.e., ACC or LKA active), and no systems were active but L2 was available. 
Baseline epochs were also stratified by each week of study participation. In addition to 
baselines, all SCEs were identified, along with a subset of alerts. The alerts included in the 
L2 MFA NDS were all generated as part of the lateral driving automation feature. Thus, 
alerts were based on lack of detected steering input from the driver and/or crossing a 
detected lane marking. FCW alerts and HOW prompts were not sampled in the L2 MFA 
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NDS. Table 4 shows the number of sampled baseline epochs for each ADAS level in the L2 
MFA NDS, as well as SCEs and alerts. 

Table 4. Total epochs (baselines sampled for each ADAS status, SCEs, and alerts) for the L2 
MFA NDS. 

Epoch Total 

L2 Active 1,388 

L1 Active (L2 available) 1,139 

None Active (L2 available) 1,228 

SCEs 71 

Alerts 450 

For each epoch, trained data reductionists used recorded video and kinematic data to 
annotate the driver, vehicle, and environmental factors present during each of the ADAS 
activation levels, SCEs, or alerts. All data reductionists for both the VCC L2 NDS and L2 
MFA NDS underwent identical training procedures, including a coding and feedback loop 
wherein they were required to reach an accuracy rate of at least 90% (i.e., when compared 
to an expertly reduced set of events) before they could progress to independently reducing 
new events. All data reduction completed by new reductionists was initially quality checked 
by a senior reductionist or reduction coordinator for a 100% rate of quality-control checks. 
The rate of quality checks was gradually reduced to 75%, then to 50%, if the reductionist’s 
accuracy remained consistent for at least one week. The VTTI data dictionary (VTTI, 2015) 
was used for data reduction in both studies. This dictionary includes definitions used in the 
data reduction process, descriptions of all reduction variables, and examples of secondary 
tasks. Environmental variables included weather, lighting, roadway type, and traffic 
density, all of which may impact ADAS usage. In addition to epoch reduction, eye-glance 
analysis was performed on all baseline epochs, SCEs, and alerts for both studies. Eye-
glance locations were then classified as on-road/off-road and driving-related/non-driving-
related for the purposes of analysis. Table 5 includes eye-glance locations and on-road or 
driving-related classifications used in both data sets. 
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Table 5. Eye-glance location classifications used in both NDS data sets. 

Eye-Glance Location 
On-Road 

Classification 
Driving-Related 
Classification 

Center Dashboard Console No No 

Interior Object No No 

Cell Phone No No 

Passenger No No 

Over-the-Shoulder (left or right) No Yes 

Eyes Closed No No 

Instrument Panel No Yes 

Other No No 

No Eyes Visible - Location Unknown Unknown Unknown 

Forward Yes Yes 

Right Windshield Yes Yes 

Rearview Mirror No Yes 

Left Windshield Yes Yes 

Left Window/Mirror No Yes 

Right Window/Mirror No Yes 

Driver drowsiness was also assessed on both NDS data sets using PERCLOS, which uses 
video of the driver’s face to determine the percentage of time a driver’s eyes are closed, here 
across a one-minute period (i.e., PERCLOS 1). PERCLOS 1 was performed on epochs where 
the driver’s eyes were visible (i.e., not occluded by an object, sunglasses, glare, or poor video 
quality) for at least 80% of the epoch. Trained data reductionists viewed the video frame-by-
frame (15 Hz capture rate) and selected one of three classification options for each frame: 
Eyes Open, Eyes Closed, or Unknown. Consistent with the PERCLOS definition, Eyes 

Closed was operationally defined as the eyelid being at least 80% closed and covering the 
pupil. After completion of an event, reductionists reviewed their work by watching the video 
at half-time playback speed to ensure accuracy. If the driver’s eyes were coded Eyes Closed 
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for more than 12% of the valid video frames in an epoch, the driver was considered drowsy. 
PERCLOS was performed on all baseline epochs, SCEs, and alerts for the VCC L2 NDS and 
on all SCEs and alerts for the L2 MFA NDS. Due to the large number of baseline epochs in 
the L2 MFA NDS, a subset of baselines was sampled for PERCLOS. The plan was to 
randomly sample three epochs for each ADAS status (i.e., three ADAS levels) per 
participant, which would have yielded 1,080 PERCLOS epochs. However, availability of 
valid video data resulted in 919 epochs sampled from the L2 MFA NDS for PERCLOS 1 
analysis. These epochs were randomly sampled from available data for each participant and 
were not matched across ADAS status. 

Data Analysis 

In the current study, descriptive statistics used to understand the distribution of variables 
included calculations for average (mean), standard deviation, median, first and third 
quartile (25th and 75th percentiles, respectively), and minimum and maximum values. These 
metrics were particularly useful for research questions with data limitations, allowing for 
meaningful comparisons even without inferential statistics.  

A mixed-effect logistic regression model was used to evaluate the relationship between 
engagement in a secondary task and ADAS status (i.e., active versus available). For each 
baseline, STE was treated as an indicator variable (1 = yes, STE was observed during the 
baseline epoch; 2 = no, STE was not observed during the baseline epoch). The model 
predicted the log odds of STE from system status; a driver-level random effect was included 
to account for correlations in data from the same driver. Odds ratios and 95% confidence 
intervals calculated from the logistic regression model compared the estimated odds of STE 
in baseline epochs for active and available ADAS. If the confidence interval included “1,” 
the two systems did not have a statistically significant difference in odds of STE. A 
confidence interval that was fully above or below “1” indicated a statistically significant 
difference in odds of STE by system status. Individual models were built for each system. If 
a model did not converge, a fixed-effects model (i.e., without a random effect for driver) was 
used. This same methodology was used to assess differences in STE during SCEs by system 
status. 

A Poisson mixed-regression model was used to assess the impact of ADAS status on SCE 
rate. This model estimates how counts over time change with predictor variables. The 
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number of SCEs and driving minutes in each system and status level were tabulated for 
each participant. The SCE counts were modeled by system status, using log of total minutes 
as an offset. As in the mixed-effect logistic regression model, a driver-level random effect 
was included to account for correlations in data from the same driver. 

Several analysis techniques were used to understand eye-glance behaviors in the different 
ADAS levels. Generalized linear mixed models were used to model total eyes-off-road time 
(EORT) and duration of the longest glance. In these models, the eye-glance metric was the 
response variable, with system status and a driver-level random effect as predictor 
variables. Two eye-glance metrics were bound by 0 (0%) and 1 (100%) lower and upper 
limits: 1) percent total EORT and 2) percent of glances greater than 2 seconds. For these 
eye-glance metrics, Beta regression models were used to assess the impact of ADAS status. 
Data for Beta regression models must be within the bounds of (0, 1), not inclusive of 0 or 1. 
Because the current study data could include these bounds, data with these values were 
transformed using the method outlined by Smithson and Verkuilen (2006) and tested by 
Blanco et al. (2015). Beta regression models for each eye-glance metric used system status 
as a predictor variable. 

An analysis of drivers’ reaction times to alerts used the time from alert to first response, 
measured in seconds, from sampled alerts wherein the driver was observed reacting to the 
alert (not to the precipitating event). Epochs without a visible driver response to the alert 
were removed from the analysis of reaction time. The differences in reaction time between 
alert types were modeled using generalized linear models, with alert type as the predictor 
variable. 

All analyses were completed using SAS software, version SAS 9.41. 

 

 

 

 

 

                                                
1 For an in-depth discussion of naturalistic driving analysis models, please see Guo (2019). 
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Results 

This section provides an initial breakdown of the two NDS data sets, including a summary 
of ADAS usage. The research questions are then presented individually, followed by a 
description of the results of the analyses. Each research question was examined via 
individual tests, either descriptive or inferential.  

Summary of Data Sets 

This section summarizes the trip and ADAS status or activation information for both NDS 
data sets (i.e., the VCC L2 NDS and L2 MFA NDS). In addition, environmental and 
roadway scenarios were assessed and categorized where drivers had L2 active, L1 active, or 
no systems active (i.e., systems available but not active). Factors such as locality, traffic 
density, weather, and traffic flow have previously been shown to predict whether 
automation features were active at the time of driving (Russell et al., 2018). 

Across the 30 VCC L2 NDS participants used in the current study, a total of 359,155 miles 
were driven (11,972 average miles per participant), which equated to 12,619 total hours of 
driving (421 average hours per participant). In the L2 MFA NDS, 120 participants drove a 
total of 217,207 miles (1,810 average miles per participant), which equated to a total of 
6,957 hours of driving (58 average hours per participant). Relative to ADAS activation, 
Table 6 provides a summary of total and average hours per driver of system activation for 
both the VCC L2 NDS and L2 MFA NDS, as well as the duration of ADAS use as a 
percentage of the total hours of driving. Due to the different sampling strategies used in the 
two studies, the ADAS activation categories are slightly different. For example, in the VCC 
L2 NDS, the “None Active” category includes instances when ADAS were available (but not 
active) and when the ADAS were completely unavailable. Conversely, in the L2 MFA NDS, 
the epochs selected for inclusion in the data set had to meet specific criteria other than L1 
active or none active. In both cases, L2 needed to be available (but not active), the minimum 
speed of the vehicle had to be 40 mph, and there needed to be verified visible lane 
markings. Thus, all other epochs that did not meet these criteria were combined under “All 
Other” in Table 6. This category includes epochs wherein ADAS were unavailable or ADAS 
were available but the epoch did not meet the set criteria. Interestingly, the percentage of 
ADAS use was fairly similar across the two studies when similar categories were combined, 
with L2 active being approximately 5% higher in the L2 MFA NDS than in the VCC L2 
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NDS (approximately 17% versus 12%, respectively). L1 was active (i.e., ACC active or LKA 
active in the VCC L2 NDS, when collectively tallied) approximately 12% of the time, and 
the majority of driving (i.e., approximately three-quarters of the total duration) occurred 
under manual driving conditions (i.e., “None Active” in the VCC L2 NDS and “None Active” 
plus “All Other” in the L2 MFA NDS). 

Table 6. Summary of ADAS activation for the VCC L2 NDS and L2 MFA NDS. 

 

ADAS Activation N 
Total Duration 
of ADAS Use 
(hrs) 

% of ADAS Use  Average ADAS 
Use per Driver 
(hrs) 

VC
C

 L
2 

N
D

S 

L2 Active 

30 

1,500.52 11.89% 50.02 

ACC Active 880.90 6.98% 29.36 

LKA Active 635.15 5.03% 21.17 

None Active 

(includes ADAS 

unavailable) 

9,602.18 76.09% 320.07 

L2
 M

FA
 N

D
S 

L2 Active 

120 

1,177.73 16.93% 9.81 

L1 Active (L2 

Available) 
841.07 12.09% 7.01 

None Active (L2 

Available) 
1,601.32 23.02% 13.34 

All Other (i.e., did 

not meet inclusion 

criteria) 

3,336.88 47.96% 27.81 

In both the VCC L2 NDS and L2 MFA NDS, environmental and roadway scenarios differed 
somewhat depending on ADAS status. Figure 4 and Figure 5 show that the majority of 
baseline epochs for both NDSs occurred during clear/partly cloudy weather, regardless of 
ADAS status. Participants in the VCC L2 NDS were slightly more likely to have L2 active 
on overcast days. There was also a similar percentage of baseline epochs in both NDSs 
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where drivers had L2 active, despite rainy weather. This is typically against the 
recommendations of the vehicle manufacturers, who strongly caution drivers not to use 
ADAS in inclement weather. 

 
Figure 4. ADAS status based on weather conditions for the VCC L2 NDS 

 

 

Figure 5. ADAS status based on weather conditions for the L2 MFA NDS 

Figure 6 and Figure 7 show ADAS activation across both NDS data sets as based on road 
type. Participants in both NDSs drove with L2 active far more frequently on two-way, 
divided roads compared to other two-way or one-way road types. In the VCC L2 NDS, 
participants drove with one system active more frequently on two-way (divided and 
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undivided) roads compared to roads with one-way traffic. In both NDSs, no systems active 
was more frequent on roads with one-way traffic compared to other ADAS use (i.e., L2 or L1 
active). 

 

Figure 6. ADAS status based on road type for the VCC L2 NDS 

 

 

Figure 7. ADAS status based on road type for the L2 MFA NDS 

Figure 8 and Figure 9 show the percentage of ADAS activations across traffic density types 
in both NDSs. Participants in both NDSs were much more likely to drive with ADAS active 
under free or stable maneuvering conditions than during unstable maneuvering conditions. 
Participants in the VCC L2 NDS were also more likely to have L2 active under stable 
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maneuvering conditions than participants in the L2 MFA NDS (73% versus 67%, 
respectively).  

 

Figure 8. ADAS status based on traffic density types for the VCC L2 NDS 

 

 

Figure 9. ADAS status based on traffic density types for the L2 MFA NDS 

Figure 10 and Figure 11 show the percentage of ADAS activations across locality types in 
both NDSs. Participants in both NDSs activated both systems more frequently on 
interstate roads (i.e., controlled highways) compared to all other localities. In both studies, 
driving with one or no systems active was frequent on not only controlled highways but in 
business/industrial localities. 
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Figure 10. ADAS status based on locality types for the VCC L2 NDS 

 

 

Figure 11. ADAS status based on locality types for the L2 MFA NDS 

 

Research Question 1: What driver behaviors are observed when ADAS are 
active? 

The occurrence of driver behaviors that one could consider meaningful to the presence of 
automation was relatively low in the VCC L2 NDS. Therefore, individual driver behaviors 
were combined into two broader categories for the purposes of reporting performance errors 
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and judgment errors. Driver performance errors included a variety of vehicle operation and 
maneuver errors. This category comprised the following driver behaviors: 

• Apparent Inexperience: Driver behaved in an unsafe manner, apparently due to lack 
of experience with the driving task (e.g., hyper-focused driving, overly cautious 
maneuvers). 

• Blind Spot: Driver was traveling close to another vehicle in such a way that the 
driver of the other vehicle was not expected to be able to see him/her (note that the 
study driver must have maintained this position for at least 5 seconds). 

• Improper Turn: Driver turned left or right from the initial travel path, unnecessarily 
encroaching into the adjacent lane, median, or shoulder/curb. 

• Right-of-Way: Driver made the incorrect decision regarding who had the right-of-
way (i.e., his/her own vehicle or another vehicle or pedestrian) due to a 
misunderstanding or improper analysis of the situation. 

• Signal Violation: Driver did not notice a traffic signal (i.e., this error was not 
intentional). 

• Stop-Yield Violation: Driver did not notice an intersection with either a stop sign or 
a yield sign (i.e., this error was not intentional). 

• Wrong Side of Road: Driver was traveling on the wrong side of the road with no 
intent of passing or overtaking another vehicle. 

• Driving Too Slow: Driver was traveling at a speed much lower than the posted speed 
limit (i.e., ≥ 10 mph under posted speed limit) when higher speeds were appropriate. 

• Sudden or Improper Braking: Driver braked suddenly, in an unsafe manner, or at an 
unsafe time in the roadway, but did not come to a complete stop. 

• Failed to Signal: Driver failed to properly signal his/her intent by not signaling at all 
(e.g., changed lanes or made a turn without signaling). 

As noted, there were very few performance errors made, and most of the driver behaviors 
listed above did not appear in either data set. In the VCC L2 NDS, there were 13 
performance errors (approximately 1.6% prevalence) across all ADAS levels from the 
baseline data set. When systems were available but not active, 12 drivers failed to signal. 
One driver showed signs of apparent inexperience when ACC was active. In the L2 MFA 
NDS, there were 65 performance errors from the baseline data set (approximately 1.7% 
prevalence), the majority of which occurred when drivers had no systems active (i.e., under 
manual driving conditions). Of these performance errors, the most frequent was failing to 
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signal, which occurred 34 times when drivers had no systems active. Five drivers were 
driving too slowly when they had L2 active, and six drivers showed signs of apparent 
inexperience with the vehicles.  

The remaining driver behaviors were classified as judgment errors, which were 
operationally defined to include aspects of a momentary lapse of judgment by the driver 
(Dingus et al., 2016). Judgment errors included speeding, driving too fast for the conditions, 
and other forms of aggressive driving (e.g., illegal passing or following too closely). As 
shown in Table 7, exceeding the speed limit was the most frequent judgment error made in 
both the VCC L2 NDS and the L2 MFA NDS, followed by illegal passing. Speeding in a 
work zone was a more frequent judgment error made among the L2 MFA NDS drivers than 
among drivers in the VCC L2 NDS. 

Table 7. Judgment errors across all ADAS statuses in the VCC L2 NDS and L2 MFA NDS. 

 
 Aggressive 

Driving 
Exceed 
Speed 
Limit 

Speed in 
Work 
Zone 

Illegal 
Passing 

Follow 
too 

Closely 

Intentional 
Signal 

Violation 

Intentional 
Stop-Yield 
Violation 

VC
C

 L
2 

N
D

S 

L2 Available 0 35 2 3 1 0 0 

L2 Active 0 22 0 2 0 0 0 

ACC 
Available 0 14 0 3 0 0 0 

ACC Active 0 13 0 2 0 0 0 

LKA 
Available 0 4 1 2 0 0 0 

LKA Active 1 6 0 3 1 0 0 

L2
 M

FA
 N

D
S L2 Active 0 263 5 1 0 0 0 

L1 Active 0 181 2 4 1 2 0 

None Active 4 186 3 9 1 3 0 
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Research Question 2: Do unsafe driver behaviors occur more frequently 
when ADAS are active?  

When assessing the unsafe driver behaviors that compose the group of judgment errors 
relative to the VCC L2 NDS, exceeding the speed limit was the only unsafe driver behavior 
with enough data to investigate further (Table 7). Exceeding the speed limit refers to 
instances wherein the driver was traveling greater than 10 mph above the posted speed 
limit and was not in a work zone. The data indicate that exceeding the speed limit occurred 
more often when VCC L2 NDS drivers had L2 available compared to when they had L2 
active (17.5% versus 11%, respectively). Thus, in the VCC L2 NDS, the simultaneous use of 
both LKA and ACC resulted in a reduction in the occurrence of speeding (i.e., ≥ 10 mph over 
the posted speed). Further testing revealed this difference was significant (OR = 0.53, 95% 
LCL = 0.29, 95% UCL = 0.95). 

In the L2 MFA NDS, the occurrence of exceeding the speed limit was greater when L2 was 
active. Further testing showed drivers with L2 active had significantly higher odds of 
exceeding the posted speed limit by at least 10 mph (OR = 1.27, 95% LCL = 1.01, 95% UCL 
= 1.60) when compared to no systems active. This is opposite the trend demonstrated in the 
VCC L2 NDS, which showed a reduction in the occurrence of exceeding the speed limit 
when L2 was active. 

Research Question 3: Does STE occur more frequently when ADAS are 
active? 

In the VCC L2 NDS, engagement in a secondary task was assessed when L2 was active and 
when it was available, when ACC only was active and when it was available, and when 
LKA only was active and when it was available. The initial approach assessed the overall 
presence of any secondary task (i.e., versus just driving [no STE]). Overall, drivers were 
observed engaging in a secondary task during 45% to 58% of baseline epochs (see Table 8). 
A mixed-effect logistic regression model compared STE under active and available statuses 
for all ADAS levels. The results revealed no significant differences for ACC and LKA 
individually active compared to available. For L2 active, the odds of STE when L2 was 
active were significantly higher than when L2 was available but not active (OR = 1.54, 95% 
LCL = 1.03, 95% UCL = 2.30).  
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In the L2 MFA NDS, engagement in a secondary task was assessed when L2 was active, 
when L1 was active, and when no systems were active (i.e., under manual driving 
conditions). Interestingly, the results of STE tended in the opposite direction to that found 
in the VCC L2 NDS. Overall, drivers were observed engaging in a secondary task during 
60% of baseline epochs with L2 active compared to 69% with no systems active. A mixed-
effect logistic regression model revealed drivers who had no systems active had significantly 
higher odds of STE compared to both baselines with L1 active (OR = 1.23, 95% LCL = 1.02, 
95% UCL = 1.49) and baselines with L2 active (OR = 1.38, 95% LCL = 1.16, 95% UCL = 
1.64). 

Table 8. Overall STE during baselines for all ADAS statuses in the VCC L2 NDS and L2 

MFA NDS. 

 
ADAS Status 

Total Number of 
Baselines 

% with STE 

VC
C

 L
2 

N
D

S 

L2 Available 200 47% 

L2 Active 200 58% 

ACC Available 133 53% 

ACC Active 133 52% 

LKA Available 71 45% 

LKA Active 71 46% 

L2
 M

FA
 N

D
S 

L2 Active 1,388 60% 

L1 Active 1,139 63% 

None Active 1,228 69% 

To further investigate the types of secondary tasks performed, secondary tasks were 
categorized as visual-manual, visual, manual, or cognitive based on the primary demands of 
the task. For example, a visual task required the driver to look away from the forward road 
to visually obtain information but did not require the driver to take his/her hands off the 
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steering wheel (e.g., looking at a pedestrian). A manual task required the driver to take one 
or both hands off the steering wheel, for example, to manipulate a device or control. 
However, the driver was not required to look away from the forward roadway (e.g., holding 
a cell phone, smoking a cigarette). A visual-manual task required a combination of hands-
off the steering wheel and eyes-off the forward roadway (e.g., texting, adjusting/monitoring 
climate control). Finally, a cognitive task required the driver to divert his/her mental 
attention away from the driving task; examples included interacting with passengers and 
talking/listening on a hands-free cell phone. Figure 12 and Figure 13 show the prevalence 
for each secondary task category in the VCC L2 NDS and the L2 MFA NDS data sets, 
respectively. Note that drivers may have engaged in more than one type of secondary task 
during the epoch; thus, percentages within each ADAS level did not total 100%. 

When drivers performed a secondary task in the VCC L2 NDS data set, it was most often a 
visual-manual task (Figure 12). Interestingly, the occurrence of engagement in a visual-
manual secondary task increased from 24% with L2 available to 32% with L2 active. The 
occurrence of manual STE also increased for all ADAS statuses when comparing systems 
available to systems active. For example, when ACC was available, manual task 
engagement was 5%; this increased to 11% with ACC active. Cognitive STE showed the 
opposite trend, with occurrence decreasing slightly when switching from available to active 
for L2 (~20% and 17%, respectively) and ACC (23% and ~20%, respectively). 
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Figure 12. Occurrence of STE by ADAS status in the VCC L2 NDS 

As seen in Figure 13, the above trends did not hold true for the L2 MFA NDS data set. The 
occurrence of cognitive, visual-manual, and visual STE was higher when drivers had no 
systems active (i.e., manual driving) than when L1 was active or when L2 was active. The 
exception was manual STE, which was approximately the same with no active systems as 
when L2 was active. 
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Figure 13. Occurrence of STE by ADAS status in the L2 MFA NDS 

To conduct inferential testing on secondary task types across ADAS statuses, the visual, 
manual, and visual-manual tasks were combined into one group. Figure 14 shows the 
occurrence of cognitive STE compared to the occurrence of the visual, manual, or visual-
manual combined STE for all ADAS statuses in the VCC L2 NDS. A mixed-effect logistic 
regression model comparing systems active to systems available was not significant for 
ACC or LKA across either the cognitive secondary tasks or the combined visual, manual, or 
visual-manual tasks. When L2 was active, however, the odds of a driver performing a 
visual, manual, or visual-manual task were significantly higher than when both systems 
were available (OR = 1.81, 95% LCL = 1.20, 95% UCL = 2.74). The odds of a driver 
performing a cognitive task were not significantly different when L2 was active compared 
to when L2 was available.  
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Figure 14. Occurrence of cognitive STE and combined visual, manual, and visual-manual 

STE compared across all ADAS statuses in the VCC L2 NDS 

Figure 15 shows the occurrence of cognitive STE compared to the combined visual, manual, 
or visual-manual STE for all ADAS statuses in the L2 MFA NDS. A mixed-effect logistic 
regression model comparing the three ADAS statuses found drivers with no systems active 
had significantly higher odds of engaging in a visual, manual, or visual-manual task 
compared to drivers with L1 active (OR = 1.27, 95% LCL = 1.06, 95% UCL = 1.52), but did 
not differ significantly from drivers with L2 active. The model also found drivers who had 
L1 active and drivers with no systems active both had significantly higher odds of engaging 
in a cognitive task than drivers with L2 active (OR = 1.32, 95% LCL = 1.10, 95% UCL = 
1.59; OR = 1.51, 95% LCL = 1.26, 95% UCL = 1.80, respectively). No other comparisons 
were significant.    
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Figure 15. Occurrence of cognitive STE and combined visual, manual, or visual-manual 
STE compared across all ADAS statuses in the L2 MFA NDS 

Research Question 4: Do the characteristics of SCEs change when ADAS 
are active? 

In the VCC L2 NDS, there were 159 safety critical events (SCEs), four of which were 
crashes (or minor collisions) and 155 that were near-crashes. Twelve of the SCEs were 
excluded from the following analysis due to an inability to determine ADAS status. 
Additionally, due to low numbers of some ADAS statuses, SCEs were combined into the 
following categories:  

• ADAS Active, which meant one or both systems were active at the time of the SCE;  

• ADAS Available, which meant one or both systems were available but were not 
active at the time of the SCE; and  

• ADAS Unavailable, which meant none of the systems were active or available at the 
time of the SCE.  

There were 45 SCEs with ADAS Active, 92 with ADAS Available, and 10 with ADAS 
Unavailable.  
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The majority of the SCEs in the VCC L2 NDS were rear-end striking incidents (n = 77), 
defined as “the subject vehicle (V1) makes contact or nearly makes contact with any portion 
of the back of the vehicle in front (V2)” (VTTI, 2015). Sixty-two percent of the rear-end 
striking SCEs occurred with systems available; 38% occurred with systems active. The 
second most frequent incident type was sideswipe, same direction (left or right), defined as 
the “subject vehicle (V1) is struck or nearly struck by another vehicle (V2) or strikes or 
nearly strikes another vehicle (V2) on either the driver or passenger side of the vehicle (V1 
or V2) when the vehicles were traveling in the same direction” (VTTI, 2015). Of the 30 
sideswipe SCEs, 60% occurred with systems available. Only 40% occurred when systems 
were active.  

SCEs in the VCC L2 NDS mostly occurred during daylight hours (n = 119) in clear/partly 
cloudy (n = 105) or overcast (n = 35) weather, regardless of ADAS status. A higher 
percentage of the SCEs with ADAS Active occurred on divided (median strip or barrier) 
roads than with ADAS Available (98% versus 75%, respectively). Traffic density when SCEs 
occurred was similar regardless of ADAS status, ranging from level-of-service B (flow with 
some restrictions) to level-of-service E (flow is unstable, vehicles are unable to pass, 
temporary stoppages, and all levels in between). There were some differences between the 
localities of SCEs depending on ADAS status. A higher percentage of SCEs with ADAS 
Active occurred on interstates/bypasses/divided highways (controlled access) compared to 
ADAS Available (78% versus 53%, respectively). SCEs with ADAS Available occurred more 
frequently in business/industrial localities compared to when systems were active (29% 
versus 9%, respectively). 

In the L2 MFA NDS, there were 71 SCEs, five of which were crashes and 66 that were 
near-crashes. Seventeen of these were excluded from the following analysis due to 
indeterminable ADAS status at the time of the SCE. Of the remaining 54 SCEs, there were 
13 SCEs with L2 active, 11 with L1 active, and 30 with no systems active. 

Similar to the VCC L2 NDS, the two most frequent types of SCEs occurring in the L2 MFA 
NDS were rear-end collisions (n = 35) and sideswipe, same direction (n = 13). For rear-end 
SCEs, approximately 26% occurred with L2 active, 14% occurred with L1 active, and 60% 
occurred with no systems active. For sideswipe SCEs, 23% occurred with L2 active, 38% 
occurred with L1 active, and 39% occurred with no systems active. The SCEs typically 
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occurred during daylight hours (n = 41) in clear/partly cloudy weather (n = 44). Unlike the 
VCC L2 NDS, four of the SCEs in the L2 MFA NDS occurred when it was raining (i.e., 
when ADAS are not recommended for use). Most of the SCEs occurred on divided (median 
strip or barrier) roads, with all 13 SCEs with L2 active occurring on these road types. 
Level-of-service B was associated with the most SCEs, regardless of ADAS status. Levels-
of-service C (stable flow, maneuverability, and speed are more restricted) and D (unstable 
flow – temporary restrictions substantially slow driver) were also applicable to a smaller 
number of SCEs. Also similar to the VCC L2 NDS, the most frequent locality for SCEs 
occurring in the L2 MFA NDS, regardless of ADAS status, was interstate/bypass/divided 
highway (controlled access), which accounted for all SCEs with both systems active. SCEs 
with one system active and no systems active also frequently occurred in 
business/industrial localities (27% and 37%, respectively). 

Research Question 5: Do SCE rates differ when ADAS are active? 

Due to the low numbers of safety critical events (SCEs) across multiple ADAS levels (e.g., 
13 SCEs had ACC active and 9 SCEs had LKA active) in the VCC L2 NDS, ADAS levels 
were combined into two categories for the purposes of analysis: 1) ADAS Active and 2) 
ADAS Available/Inactive. Table 9 shows a summary of the total SCE counts across both 
categories, the total minutes of driving, and the averages of both SCE counts and minutes 
per driver for the VCC L2 NDS. 

Table 9. Summary of SCE counts and minutes of driving for each ADAS status in the VCC 
L2 NDS. 

ADAS Status 
Total SCE 
Count 

Average (SD) 
SCE Count per 
Driver 

Total Minutes 
Average (SD) Minutes 
per Driver 

Active 45 1.50 (2.60) 166,022.52 5,534.08 (5,098.57) 

Available/Inactive 102 3.40 (3.33) 531,643.93 17,721.46 (8,116.02) 

Figure 16 shows drivers’ SCE rates per 1,000 driving minutes with ADAS Active and ADAS 
Available/Inactive in the VCC L2 NDS. As can be seen in the plot, there was a small 
number of drivers whose SCE rates per 1,000 minutes of driving were noticeably higher 
when ADAS were active compared to when ADAS were available or inactive. Participant 1 
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in the figure, for example, had an SCE rate of approximately 1.3 per 1,000 driving minutes 
when ADAS were active compared to approximately 0.1 per 1,000 driving minutes when 
ADAS were available/inactive. 

 

Figure 16. Drivers’ SCE rates per 1,000 minutes of driving with ADAS Active and ADAS 

Available/Inactive in the VCC L2 NDS 

To consider the differences between drivers’ SCE rates in the VCC L2 NDS, each drivers’ 
SCE rate was calculated for each ADAS status based on the sum of their SCEs (i.e., with 
systems active and with systems available/inactive) divided by their total minutes of 
driving (i.e., minutes of driving with systems active and minutes of driving with systems 
available/inactive). Thus, rather than an overall average SCE rate, this method provided a 
per-driver average SCE rate per driving minutes. Table 10 shows the per-driver average 
SCE rates per 1,000 minutes of driving for ADAS Active and for ADAS Available/Inactive. 
A Poisson mixed-regression model was used on the SCE rates, with a log of total minutes as 
an offset. The model found no significant differences in the SCE rates with ADAS Active 
and ADAS Available/Inactive (F value = 1.11, p = 0.30). The similarity in SCE rates 
between ADAS Active and ADAS Available/Inactive may seem surprising in light of 
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outcomes for Research Question 4 above. However, Table 9 shows that, despite a greater 
SCE count across the available/inactive category, that category of driving also accounted for 
approximately three times as many minutes. Thus, the SCE rates per 1,000 minutes across 
the two groups were similar. 

Table 10. Per-driver average SCE rates for ADAS Active and ADAS Available/Inactive in 
the VCC L2 NDS. 

ADAS Status 
Average (SD) SCE Rate per 1,000 
Driving Minutes 

Active 0.23 (0.29) 

Available/Inactive 0.20 (0.18) 

The approaches used above were also applied to the L2 MFA NDS, with ADAS status 
grouped as active or available/inactive. Table 11 shows a summary of the total SCE counts, 
total minutes of driving, and the averages of both counts and minutes per driver for the L2 
MFA NDS. 

Table 11. Summary of SCE counts and minutes of driving for each ADAS status in the L2 
MFA NDS. 

ADAS Status 
Total SCE 
Count 

Average (SD) 
SCE Count per 
Driver 

Total Minutes 
Average (SD) Minutes 
per Driver 

Active 24 0.20 (0.51) 116,295.25 961.12 (514.34) 

Available/Inactive 30 0.25 (0.71) 301,136.22 2,488.73 (1,275.56) 

Figure 17 shows drivers’ SCE rates per 1,000 driving minutes with ADAS Active and ADAS 
Available/Inactive in the L2 MFA NDS. The plot does not show the complete study sample 
of 120 participants, as the majority of participants were not involved in any SCEs, 
regardless of ADAS status. Interestingly, many drivers in Figure 17 appear to be involved 
in SCEs with ADAS Active but not with ADAS Available/Inactive and vice versa. 
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Figure 17. Drivers’ SCE rates per 1,000 minutes of driving with ADAS Active and ADAS 
Available/Inactive in the L2 MFA NDS 

As in the VCC L2 NDS, drivers’ SCE rates in the L2 MFA NDS were calculated based on 
each drivers’ SCE count and their total minutes of driving for each ADAS level. Table 12 
shows the per-driver average SCE rates per 1,000 minutes of driving for ADAS Active and 
for ADAS Available/Inactive. A Poisson mixed-regression model was used on the SCE rates, 
with a log of total driving minutes in each ADAS status as an offset. The model found SCE 
rates to be significantly higher than expected with ADAS Active compared to ADAS 
Available/Inactive (F value = 4.13, p = 0.04).  
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Table 12. Per-driver average SCE rates for ADAS Active and ADAS Available/Inactive in 
the L2 MFA NDS. 

ADAS Status 
Average (SD) SCE Rate per 1,000 
Driving Minutes 

Active 0.20 (0.56) 

Available/Inactive 0.10 (0.28) 

 

Research Question 6: Is there an increased prevalence of STE during SCEs 
that occur when ADAS are active? 

As in Research Question 5, due to low numbers of SCEs in the VCC L2 NDS, ADAS levels 
were combined into two broad categories of ADAS Active and ADAS Available/Inactive. 
Table 13 shows a summary of the secondary tasks present during SCEs in the VCC L2 NDS 
data set, based on whether ADAS were active or available/inactive. 
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Table 13. Summary of secondary tasks present during SCEs where ADAS were active or 
available/inactive in the VCC L2 NDS. 

Secondary Task ADAS Active 
ADAS 

Available/Inactive 

Adjusting/monitoring in-vehicle device, instrument 

panel, or radio 
3 9 

Cell phone-related tasks (i.e., browsing, holding, 

texting, talking/listening on handheld phone) 
6 16 

Passenger interactions 0 9 

Personal hygiene-related tasks 0 3 

Interacting with object or pet in vehicle 0 11 

Food- or drink-related task 0 2 

Smoking cigar/cigarette 1 0 

Other external distraction 1 8 

Talking/singing, audience unknown 4 7 

As seen in Table 13, cell phone-related tasks were the most prevalent secondary tasks 
performed in SCEs that occurred when ADAS were active, as well as when ADAS were 
available/inactive. Talking/singing and adjusting/monitoring in-vehicle devices were the 
next most frequent secondary tasks performed during ADAS Active SCEs. Interacting with 
an object or a pet in the vehicle, adjusting/monitoring in-vehicle devices, and passenger 
interaction were all common secondary tasks performed during SCEs when ADAS were 
available/inactive. 

To determine if there was an increased prevalence of STE during SCEs in the VCC L2 
NDS, the proportion of SCEs that included STE for each ADAS status was calculated, along 
with the average SCE rate per 1,000 minutes of driving. A mixed-effect logistic regression 
model predicted STE involvement during SCEs by ADAS status using STE as a binary 
(yes/no) variable for all SCEs. The model found no statistically significant difference in the 
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odds of STE in SCEs by ADAS status (OR = 2.15, 95% LCL = 0.96, 95% UCL = 4.79; Table 
14).  

Table 14. Summary of SCEs occurring when drivers engaged in a secondary task for ADAS 

Active or ADAS Available/Inactive in the VCC L2 NDS.       

ADAS Status 
Total SCEs 
with STE  

Average (SD) 
SCE with STE 
Count per Driver 

Proportion of 
SCEs with STE 

Average (SD) SCE 
with STE Rate per 
1,000 Minutes 

Active 14 0.47 (0.86) 31.11% 0.07 (0.14) 

Available/Inactive 53 1.77 (1.55) 46.49% 0.11 (0.11) 

Table 15 shows a summary of secondary tasks present during SCEs that occurred when 
ADAS were active and when ADAS were available/inactive in the L2 MFA NDS. The most 
frequent secondary tasks present during SCEs were the same when ADAS were active and 
when ADAS were available/inactive: cell phone-related tasks, adjusting/monitoring in-
vehicle devices, and passenger interactions.  
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Table 15. Summary of secondary tasks present during SCEs where ADAS were active or 
available/inactive in the L2 MFA NDS. 

Secondary Task ADAS Active 
ADAS 

Available/Inactive 

Adjusting/monitoring in-vehicle device, 

instrument panel, or radio 
7 6 

Cell phone-related tasks (i.e., browsing, 

holding, locating/reaching/answering, 

talking/listening hands-free phone) 

21 15 

Passenger interactions 5 5 

Personal hygiene-related tasks 1 2 

Interacting with object or pet in vehicle 3 1 

Food- or drink-related task 1 0 

Smoking cigar/cigarette 0 1 

Other external distraction 4 1 

Dancing, Talking/singing, audience unknown 4 3 

To determine if there was an increased prevalence of STE during SCEs in the L2 MFA 
NDS, the proportion of SCEs that included STE for each ADAS status was calculated, along 
with the average SCE rate per 1,000 minutes of driving (Table 16). A mixed-effect logistic 
regression model predicted STE as a binary (yes/no) variable for all SCEs by ADAS status. 
The model found no statistically significant difference in the odds of STE in SCEs by ADAS 
status (OR = 1.54, 95% LCL = 0.38, 95% UCL = 6.24).  
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Table 16. Summary of SCEs occurring when drivers engaged in a secondary task for ADAS 
Active or ADAS Available/Inactive in the L2 MFA NDS.       

ADAS Status 
Total SCEs 
with STE  

Average (SD) 
SCE with STE 
Count per Driver 

Proportion of 
SCEs with STE 

Average (SD) SCE 
with STE Rate per 
1,000 Minutes 

Active 17 0.14 (0.39) 70.83% 0.12 (0.33) 

Available/Inactive 20 0.17 (0.62) 66.67% 0.06 (0.24) 

The proportion of SCEs with a secondary task present appears to be much higher in the L2 
MFA NDS compared to the VCC L2 NDS. In the former, approximately two-thirds of SCEs 
with ADAS Available/Inactive had a secondary task present, compared to less than one-half 
with ADAS Available/Inactive in the VCC L2 NDS. This proportion increased to more than 
70% with ADAS Active in the L2 MFA NDS, compared to 31% with ADAS Active in the 
VCC L2 NDS.  

Research Question 7: Do drivers spend more time with their eyes off the 
roadway when ADAS are active? 

On-Road vs. Off-Road Glances 

There are several eye-glance metrics that can be used as surrogates for distraction. In the 
current study, these metrics included: 

• Total EORT: Cumulative total number of seconds a driver’s eyes were off the 
forward roadway within the designated baseline epoch (i.e., 10 seconds in the VCC 
L2 NDS, 15 seconds in the L2 MFA NDS); 

• Percent of EORT: Total EORT divided by the length of the baseline epoch; 

• Percentage of glances > 2 seconds: The percentage of individual glances within the 
designated baseline epoch that were greater than 2 seconds; 

• Number of off-road glances: The number of off-road glances within the designated 
baseline epoch; and 

• Longest single glance: The duration (in seconds) of the longest single off-road glance 
within the designated baseline epoch.   
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Baseline epochs with valid eye-glance data for each ADAS status across both NDSs were 
initially assessed to determine the percentage of epochs comprising no off-road glances (i.e., 
drivers’ eyes were on the forward roadway the entire time). An important difference 
between the VCC L2 NDS and L2 MFA NDS relative to eye-glance metrics is that of the 
duration of the baseline epochs (i.e., baseline epochs were 10 seconds in the VCC L2 NDS 
and 15 seconds in the L2 MFA NDS). Table 17 provides a summary of the on-road-only eye-
glance data for each ADAS level in both the VCC L2 NDS and L2 MFA NDS. 

Table 17. On-road-only eye-glance data for all ADAS statuses in the VCC L2 NDS and L2 
MFA NDS. 

 
ADAS Status 

Total Epochs with 
Valid Eye-Glance 

Epochs with On-
Road-Only Eye-
Glance 

% with On-Road-
Only Eye-Glance 

VC
C

 L
2 

N
D

S 

L2 Available 195 66 34% 

L2 Active 195 51 26% 

ACC Available 128 41 32% 

ACC Active 132 39 30% 

LKA Available 69 22 32% 

LKA Active 70 27 39% 

L2
 M

FA
 N

D
S 

L2 Active 1,321 200 15% 

L1 Active 1,097 212 19% 

None Active 1,167 185 16% 

As seen in Table 17, approximately one-third of all valid eye-glance epochs in the VCC L2 
NDS comprised on-road-only eye-glance data for all ADAS statuses. The exception was 
that, when L2 was active, the percent of on-road-only eye-glance decreased to one-quarter of 
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epochs, meaning drivers less frequently kept their eyes on-road the entire time when both 
lateral and longitudinal systems (i.e., ACC and LKA) were active. When LKA was active, 
however, nearly 40% of drivers kept their eyes on-road the entire time.  

Results from the L2 MFA NDS were similar across ADAS statuses (Table 17). When L2 was 
active, 15% of drivers kept their eyes on the forward road for the entire epoch; this was 
slightly lower than when one or no systems active, but the difference was small. 
Interestingly, the L2 MFA NDS percentages were lower across the board compared to the 
VCC L2 NDS, suggesting drivers in the L2 MFA NDS spent less time with their eyes 
consistently on the road during the sampled epochs. However, the baseline epochs in the L2 
MFA NDS were 5 seconds longer, which could account for some of the differences between 
the two studies.  

When looking specifically at Total EORT (Table 18), the average total time drivers spent 
with their eyes-off-road in the VCC L2 NDS was less than 1.5 seconds across all ADAS 
statuses, with the exception of L2 active. When drivers had L2 active, their total EORT 
increased by more than one-half of a second (to 2.02 seconds). Mixed-model results 
indicated this difference was significant (p = 0.0003). Thus, drivers with L2 active had a 
significantly higher Total EORT compared to when L2 was available. None of the other 
ADAS statuses showed significant differences between system active compared to system 
available.   

Total EORT in the L2 MFA NDS was higher than in the VCC L2 NDS, averaging close to 
2.5 seconds across all ADAS statuses (Table 18). However, as mentioned previously, the 
baseline epochs for the L2 MFA NDS were 5 seconds longer than the VCC L2 NDS. 
Interestingly, the highest average Total EORT was found when drivers had no systems 
active (2.70 seconds), followed by L2 Active (2.51 seconds), then L1 Active (2.20 seconds). 
Mixed-model results indicated significant differences between L1 Active and L2 Active (p = 
0.0018) and L1 Active and None Active (p = 0.0004). The total EORT was not significantly 
different between L2 Active and no systems active. 
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Table 18. Total EORT and Percent EORT for all ADAS statuses in VCC L2 NDS and L2 
MFA NDS (including on-road-only eye-glance epochs). 

 ADAS Status N Total EORT (s) % EORT 

VC
C

 L
2 

N
D

S 

L2 Available 195 1.29 13.0% 

L2 Active 195 2.02 20.3% 

ACC Available 128 1.29 13.0% 

ACC Active 132 1.43 14.8% 

LKA Available 69 1.43 14.4% 

LKA Active 70 1.17 11.8% 

L2
 M

FA
 N

D
S 

L2 Active 1,321 2.51 16.8% 

L1 Active 1,097 2.20 14.7% 

None Active 1,167 2.70 18.1% 

In terms of glances, the number of glances and the longest single glance were also 
important indicators of distraction. In the VCC L2 NDS, the average longest single glance 
and the average number of glances were greater when L2 was active. The model indicated 
these results were significant compared to when L2 was available (p < 0.0001 and p = 
0.048, respectively; see Table 19). None of the other ADAS statuses showed significant 
differences between systems active versus system available.  

In the L2 MFA NDS, the average longest single glance when no systems were active was 
significantly longer than when L1 was active (p < 0.0001) or when L2 was active (p = 
0.0045; see Table 19). Having L2 active also resulted in a significantly longer single glance 
compared to when L1 was active (p = 0.013). 
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Table 19. Summary of off-road glance metrics for all ADAS statuses in the VCC L2 NDS 
and L2 MFA NDS in epochs with at least one off-road glance. 

 
ADAS Status N 

Longest 
Single Glance 
(s) 

Number of 
Glances per 
Epoch 

% of Glances 
> 2 s 

VC
C

 L
2 

N
D

S 

L2 Available 129 0.94 2.53 0.2% 

L2 Active 144 1.35 2.88 4.4% 

ACC Available 87 0.93 2.38 1.9% 

ACC Active 93 1.08 2.43 1.7% 

LKA Available 47 1.11 2.43 3.2% 

LKA Active 43 1.14 2.23 2.5% 

L2
 M

FA
 N

D
S 

L2 Active 1,121 1.22 3.28 3.4% 

L1 Active 885 1.10 3.35 1.7% 

None Active 982 1.40 3.35 3.3% 

The percentage of glances longer than 2 seconds provides further insight into potential 
distraction that drivers may experience with ADAS activation. As shown in Table 19, when 
L2 was active in the VCC L2 NDS, a higher percentage of glances were longer in duration 
compared to when L2 was available (4.4% versus 0.2%). A mixed model showed this 
difference to be significant (F = 12.18, p = 0.0006). None of the other comparisons in the 
model were significant. The percentage of glances greater than 2 seconds was also highest 
for L2 Active in the L2 MFA NDS when compared to L1 Active and None Active. However, 
the model showed no significant differences between each ADAS status.    



 

65 

 

 

Driving-Related vs. Non-Driving-Related Task Glances 

An additional way to assess eye-glance behavior is to break glance locations down into 
those associated with a driving-related task or a non-driving-related task. Driving-related 
glances incorporate the front windshield (i.e., left, right, forward), left- and right-side 
windows/mirrors, rearview mirror, instrument panel, and over the shoulder (i.e., left and 
right blind spots). Non-driving-related glances encompass the center dashboard console, cell 
phone, passenger, and any other interior object. Baseline epochs with valid eye-glance data 
for all ADAS statuses were initially assessed to determine the percentage of epochs 
comprising driving-related-only glances (i.e., drivers’ eyes were on driving-related tasks the 
entire time). Table 20 provides a summary of the driving-related-only eye-glance data for 
each ADAS status in the VCC L2 NDS and L2 MFA NDS.  
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Table 20. Driving-related-only eye glances for all ADAS statuses in the VCC L2 NDS and 
L2 MFA NDS. 

 
ADAS Status 

Total with Valid 
Eye-Glance 

Driving-Related-
Only Eye-Glance 

% with Driving-
Related-Only Eye-
Glance 

VC
C

 L
2 

N
D

S 

L2 Available 195 142 73% 

L2 Active 195 113 58% 

ACC Available 128 89 70% 

ACC Active 132 92 70% 

LKA Available 69 51 74% 

LKA Active 70 53 76% 

L2
 M

FA
 N

D
S 

L2 Active 1,321 900 68% 

L1 Active 1,097 766 70% 

None Active 1,167 735 63% 

As seen in Table 20, approximately 70% or more of the baseline epochs in the VCC L2 NDS 
comprised driving-related-only glances, with the exception of L2 Active, during which 
driving-related-only glances decreased to 58%. As such, it may be inferred that when 
drivers had both longitudinal and lateral automation systems active (i.e., L2), they spent 
less time with their eyes consistently on driving-related tasks. In the L2 MFA NDS data 
set, the trend appeared to be in the opposite direction. When drivers had no systems active 
(i.e., manual driving), only 63% of the baseline epochs comprised driving-related-only 
glances, with that percentage rising to 70% when L1 was active and 68% when L2 was 
active. 
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Relative to the time drivers spent with their eyes not on driving-related tasks (Table 21), 
the average total time drivers’ eyes were on non-driving-related tasks in the VCC L2 NDS 
ranged from nearly half a second when L2 was available (but not active) to just over 1 
second when L2 was active. A mixed model indicated that drivers spent significantly more 
time with their eyes on non-driving-related tasks when L2 was active compared to when L2 
was available (p = 0.0003). None of the other ADAS statuses showed significant differences 
between systems active and systems available.  

As with previous metrics, the L2 MFA NDS showed somewhat different results to the VCC 
L2 NDS (Table 21). When drivers had no systems active, they spent significantly more time 
with their eyes on non-driving-related tasks compared to when they had L2 active (p = 0.01) 
or L1 active (p = 0.0001).  

 

 



 

68 

 

 

Table 21. Total time and percent of time eyes on non-driving-related tasks for all ADAS 
statuses in the VCC L2 NDS and L2 MFA NDS (including on-road-only epochs). 

 ADAS Status N Total Time (s) % of Time 

VC
C

 L
2 

N
D

S 

L2 Available 195 0.43 4.4% 

L2 Active 195 1.06 10.7% 

ACC Available 128 0.56 5.7% 

ACC Active 132 0.57 5.7% 

LKA Available 69 0.51 5.1% 

LKA Active 70 0.42 4.2% 

L2
 M

FA
 N

D
S 

L2 Active 1,321 0.84 5.7% 

L1 Active 1,097 0.71 4.8% 

None Active 1,167 1.16 7.8% 

The percent of time drivers spent with their eyes on non-driving-related tasks was also 
assessed (Table 21). In the VCC L2 NDS, the analysis revealed that, when drivers had L2 
active, they spent roughly 11% of the time with their eyes on non-driving-related tasks 
compared to when L2 was available (~4%). A mixed model showed this difference to be 
significant (F = 19.62, p < 0.0001). None of the other comparisons between ADAS active and 
ADAS available were significant. 

The results were different for the L2 MFA NDS, with drivers who had no systems active 
spending approximately 8% of time with their eyes on non-driving-related tasks compared 
to nearly 5% with L1 Active and approximately 6% with L2 Active. A mixed model showed 
significant differences between L1 Active and None Active (t = -4.34, p < 0.0001) and L2 
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Active and None Active (t = -2.70, p = 0.007), with no systems active being higher in both 
comparisons. 

The glance data (Table 22) showed a similar pattern for non-driving-related tasks as for 
glances off-road (Table 19). For the VCC L2 NDS, the average longest single glance and 
average number of glances per epoch were both significantly higher when L2 was active 
compared to when L2 was available (p = 0.012 and p = 0.017, respectively). As before, these 
results tended in the opposite direction for the L2 MFA NDS, with the average longest 
single glance being significantly higher under manual driving conditions (i.e., no systems 
active) compared to L2 Active (p = 0.01) and L1 Active (p = 0.0002). However, the number of 
non-driving-related glances per epoch was not significantly different across ADAS statuses 
for the L2 MFA NDS. 
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Table 22. Summary of non-driving-related task glance metrics for all ADAS statuses in the 
VCC L2 NDS and L2 MFA NDS in epochs with at least one non-driving-related task glance. 

 
ADAS Status N 

Longest Single 
Glance (s) 

Number of 
Glances per 
Epoch 

% of Glances 
> 2 s 

VC
C

 L
2 

N
D

S 

L2 Available 53 0.95 1.77 0.5% 

L2 Active 82 1.39 2.37 6.7% 

ACC Available 39 0.97 1.97 0.0% 

ACC Active 40 1.16 1.83 1.3% 

LKA Available 18 1.16 1.94 2.8% 

LKA Active 17 1.10 1.88 4.9% 

L2
 M

FA
 N

D
S 

L2 Active 421 1.30 2.47 4.7% 

L1 Active 331 1.16 2.30 2.0% 

None Active 432 1.61 2.52 4.7% 

When glances greater than 2 seconds were assessed for non-driving-related tasks, drivers in 
the VCC L2 NDS with L2 active were again shown to have a significantly higher 
percentage of non-driving-related glances greater than 2 seconds compared to when L2 was 
available (F = 7.35, p = 0.008; Table 22). When LKA was active in the VCC L2 NDS, the 
percentage of long glances (i.e., > 2 seconds) was also higher relative to when LKA was 
available; however, this difference was not significant (Table 22). Drivers in the L2 MFA 
NDS who had no systems active and those who had L2 active had the highest proportion of 
long glance durations greater than 2 seconds compared to L1 Active. However, the model 
showed no significant differences.  
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Research Question 8: When engaged in a secondary task, do drivers take 
longer glances away from the roadway when ADAS are active? 

To investigate glance behavior when drivers were engaged in a secondary task, the 
percentage of time drivers’ eyes were off the forward roadway and the number of long 
glances greater than 2 seconds were assessed. Table 23 summarizes relevant eye-glance 
metrics during STE across all ADAS statuses in both NDS data sets. The percent of EORT 
included epochs wherein drivers did not glance away from the forward roadway (i.e., 
including zero EORT). However, the percent of long glances (i.e., > 2 seconds) excluded 
epochs with zero EORT. 

During secondary tasks completed when L2 was active in the VCC L2 NDS, drivers spent 
approximately 29% of the time with their eyes off the forward roadway, compared to just 
over 18% when L2 was available. A mixed model showed this difference was significant (F = 

16.31, p < 0.0001). This was the only significant difference between systems active and 
systems available in the VCC L2 NDS.  

In terms of glances longer than 2 seconds, LKA active, ACC active, and L2 active all had 
higher percentages compared to when these systems were available, but not active. 
However, further testing showed none of these differences were statistically significant. In 
addition, comparing STE eye-glances to baseline eye-glances in Research Question 7 (Table 
18 and Table 19) revealed the percentages of EORT and long glances were higher during 
STE than during baseline driving across all levels of ADAS activation (i.e., ACC, LKA, and 
L2). 
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Table 23. Eye-glance metrics during STE across all ADAS statuses for the VCC L2 NDS 
and L2 MFA NDS. 

 
ADAS Status 

N 
(incl. zero 
EORT) 

% EORT 
N 
(excl. zero 
EORT) 

% of Glances > 2 s 

VC
C

 L
2 

N
D

S 

L2 Available 93 18.4% 75 0.3% 

L2 Active 114 28.8% 109 5.8% 

ACC Available 68 18.9% 59 1.4% 

ACC Active 68 21.1% 57 2.7% 

LKA Available 31 19.8% 26 1.9% 

LKA Active 33 18.7% 28 3.9% 

L2
 M

FA
 N

D
S 

L2 Active 791 21.1% 727 4.4% 

L1 Active 681 18.6% 600 1.9% 

None Active 792 22.3% 711 4.4% 

In the L2 MFA NDS, drivers with no systems active spent about 22% of the time with their 
eyes off the forward roadway during STE, compared to approximately 21% with L2 active 
and 19% with L1 active (Table 23). The model revealed the difference between no systems 
active and L1 Active was significant (t = -2.97, p = 0.003), and the difference between L1 
Active and L2 Active was significant (t = -3.18, p = 0.002). Comparing STE eye-glances to 
baseline eye-glances (Table 18 and Table 19) showed the percentages of EORT and longer 
glances (> 2 seconds) were higher during STE across all three ADAS statuses in the L2 
MFA NDS. 
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To evaluate eye-glance patterns associated with STE across both NDS data sets, secondary 
tasks were grouped into two broad categories: cognitive secondary tasks and visual, 
manual, or visual-manual tasks. As seen in Figure 18, the percent of time drivers spent 
with their eyes off-road was higher in the VCC L2 NDS when ADAS were active compared 
to when ADAS were available for both cognitive tasks and visual, manual, or visual-manual 
tasks. The exception was when drivers had either LKA active or ACC active, during which 
time they spent less time with their eyes off-road when engaged in other tasks than when 
the corresponding system was available. When drivers had L2 active, they spent nearly 
one-third of the time with their eyes off-road when engaged in a visual, manual, or visual-
manual task compared to nearly one-quarter of the time when L2 was available when 
engaged in a visual, manual, or visual-manual task. Further model testing revealed this to 
be the only significant difference when comparing systems active to systems available (F = 
10.65, p = 0.001). Similarly, for cognitive tasks, drivers spent significantly more time with 
their eyes off-road with L2 active compared to L2 available (F = 6.09, p = 0.017).  

 

Figure 18. Percent EORT during cognitive and visual, manual, or visual-manual tasks for 
the VCC L2 NDS 

As seen in Figure 19, the percent of time drivers spent with their eyes off-road in the L2 
MFA NDS was similar for L2 active and L1 active when engaged in a visual, manual, or 
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visual-manual task. The percent of EORT across both secondary task categories was 
slightly higher when drivers had no systems active. When engaged in a cognitive task, 
however, drivers spent a significantly higher proportion of time with their eyes off-road 
when L2 was active compared to when L1 was active (t = -2.66, p = 0.008). L2 Active was 
also higher relative to cognitive tasks than no systems active, but the difference was not 
significant. 

 

Figure 19. Percent EORT during cognitive and visual, manual, or visual-manual tasks for 

the L2 MFA NDS 

In terms of long glances (i.e., > 2 seconds), a higher proportion of long, off-road glances 
occurred in the VCC L2 NDS when L2 was active or LKA was active as drivers engaged in a 
visual, manual, or visual-manual secondary task, compared to when those corresponding 
systems were available (see Table 24). Of these two differences, only L2 Active compared to 
L2 Available was significant (F = 9.68, p = 0.002). When engaged in cognitive tasks, the 
majority of drivers in the VCC L2 NDS did not take long off-road glances, the exceptions 
being when L2 was active and when ACC was active. L2 Active compared to L2 Available 
was the only significant comparison (F = 8.60, p = 0.006). 
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Table 24. Percent of glances greater than 2 seconds for visual, manual, or visual-manual 
and cognitive tasks across all ADAS statuses in the VCC L2 NDS and L2 MFA NDS in 

epochs with at least one off-road glance. 

 
 

Visual/Manual/Visual-
Manual Tasks 

Cognitive 

 
ADAS Status N 

% of Glances > 
2 s 

N 
% of Glances > 
2 s 

VC
C

 L
2 

N
D

S 

L2 Available 60 0.4% 26 0% 

L2 Active 91 7.0% 29 4.6% 

ACC Available 43 1.9% 22 0% 

ACC Active 44 1.6% 21 4.0% 

LKA Available 19 2.6% 10 0% 

LKA Active 22 4.9% 12 0% 

L2
 M

FA
 N

D
S 

L2 Active 554 5.2% 328 3.3% 

L1 Active 419 2.6% 307 0.7% 

None Active 535 5.5% 362 2.4% 

When drivers in the L2 MFA NDS engaged in a visual, manual or visual-manual secondary 
task, they took significantly less longer glances (i.e., > 2 seconds) off-road when L1 was 
active compared to L2 active (t = -4.13, p < 0.0001) and no systems active (t = -3.51, p = 
0.0005; Table 23). During cognitive tasks, L2 MFA NDS drivers took longer glances off-road 
when L2 was active and when no systems were active. However, neither of these differences 
were significant. 
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Research Question 9: In general, do drivers engage in less scanning of the 
roadway environment when ADAS are active? 

Scanning the driving environment is an important element of safe driving behavior, as long 
as the off-road glances are short (i.e., less than 2 seconds off the forward roadway) and the 
glances are driving-related (e.g., checking mirrors or blind spots). The longer the driver has 
his/her eyes off the forward roadway, the riskier the secondary activity becomes (Klauer et 
al., 2006). To assess eye-scanning behavior by ADAS status, off-road glances, driving-
related glances, and non-driving-related glances were assessed. Total EORT, percent of 
time eyes were off-road, average single glance duration, and percent of glances greater than 
2 seconds were considered.    

In the VCC L2 NDS, it appears drivers with ACC available or L2 available (but not active) 
engaged in the safest eye-scanning behavior of the roadway environment. The percent of 
long glances on non-driving-related tasks when these two systems were available were 
lower than any other ADAS status (ACC available = 0.0%; L2 available = 0.5%; see Table 22 
under Research Question 7). Similarly, the longest single non-driving-related glance when 
ACC or L2 was available was lower than all other ADAS levels (ACC = 0.97 seconds; L2 = 
0.95 seconds; see Table 22). In addition, the total time and percent of time drivers’ eyes 
were off the forward roadway were lower when ACC or L2 was available than the majority 
of the other ADAS statuses (ACC Available: 1.29 seconds, 13.0%; L2 Available: 1.29 
seconds, 13.0%, respectively), with the exception of LKA Active (1.2 seconds, 11.8%; Table 
18 under Research Question 7).  

Conversely, drivers who had L2 active in the VCC L2 NDS engaged in poor eye-scanning 
behavior of the roadway environment. When L2 was active, drivers had the highest percent 
of non-driving-related glances greater than 2 seconds (6.7%), the greatest number of non-
driving-related glances per epoch (~2.4), and the longest single glance at non-driving-
related tasks (~1.4 seconds; see Table 22 under Research Question 7).  

When L2 was active, the percent of time drivers spent with their eyes on driving-related 
tasks (Table 25) was significantly lower compared to when L2 was available (89.4% versus 
95.6%, respectively); the average total time with eyes on driving-related tasks was also 
significantly lower when comparing L2 Active and L2 Available (8.9 seconds versus 9.5 
seconds, respectively). Thus, when L2 was active, VCC L2 NDS drivers looked away from 
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the forward roadway more frequently and for longer periods of time and spent more total 
time with their eyes not on driving-related tasks. 

Table 25. Total time and percent of time drivers’ eyes were on driving-related tasks in the 

VCC L2 NDS and L2 MFA NDS (including epochs with only driving-related glances) 

 ADAS Status N Average Total 
Time (s) 

% of Total Time 

VC
C

 L
2 

N
D

S 

L2 Available 195 9.5 95.6% 

L2 Active 195 8.9 89.4% 

ACC Available 128 9.4 94.3% 

ACC Active 132 9.4 94.3% 

LKA Available 69 9.4 94.9% 

LKA Active 70 9.5 95.8% 

L2
 M

FA
 N

D
S 

L2 Active 1,321 14.1 94.3% 

L1 Active 1,097 14.2 95.2% 

None Active 1,167 13.8 92.2% 

In the L2 MFA NDS, it appears drivers with L1 active engaged in the safest eye-scanning 
behavior of the roadway environment. These drivers had the lowest percent of long glances 
on non-driving-related tasks (2.0%), the shortest single non-driving-related glance (~1.2 
seconds), the lowest EORT (2.2 seconds), and the lowest percent of time drivers’ eyes were 
off-road (14.7%) compared to drivers with L2 Active or no systems active (Table 18 and 
Table 22 under Research Question 7). 

L2 MFA NDS drivers with no systems active appeared to engage in the poorest eye-
scanning behavior. These drivers spent significantly less time with their eyes on driving-
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related tasks compared to L2 active (t = 1.97, p = 0.05) and L1 active (t = 2.56, p = 0.01; 
Table 25). When no systems were active, drivers had the highest number of non-driving-
related glances (~2.5) and the longest single glance at non-driving-related tasks (~1.6 
seconds). The percent of long non-driving-related glances was highest with L2 Active (4.7%) 
and no systems active (4.7%), both of which were higher than when L1 was active (2.0%; 
Table 22 in Research Question 7).  

Research Question 10: Is driver drowsiness observed more often when 
ADAS are active? 

PERCLOS 1 was performed on all baseline epochs from the VCC L2 NDS data set and a 
subset of baseline epochs from the L2 MFA NDS data set. The number of valid events (i.e., 
having one minute of data available with at least 80% of video frames usable for analysis), 
the number of events rated as “drowsy,” and the prevalence of drowsy driving for each 
ADAS status in both NDSs are presented in Table 26. 
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Table 26. Prevalence of drowsy driving across all ADAS statuses in the VCC L2 NDS and 
L2 MFA NDS using PERCLOS 1. 

 
ADAS Status 

# of Valid 
PERCLOS 1 Events 

Number of Events Rated 
“Drowsy” 

(>12% PERCLOS 1) 

Drowsy Driving 
Prevalence 

VC
C

 L
2 

N
D

S 

L2 Available 174 0 0% 

L2 Active 179 1 0.6% 

ACC Available 110 2 1.8% 

ACC Active 117 0 0% 

LKA Available 57 0 0% 

LKA Active 58 1 1.7% 

L2
 M

FA
 N

D
S 

L2 Active 317 17 5.4% 

L1 Active 265 10 3.8% 

None Active 290 10 3.4% 

Drowsy driving was present in a small percentage of baseline epochs for the VCC L2 NDS, 
with the highest prevalence being 1.8% when ACC was available, followed by 1.7% when 
LKA was active. In the L2 MFS NDS, drowsy driving was present in a higher percentage of 
baselines. Notably, when L2 was active, drowsy driving was present in 5.4% of baselines 
compared to 3.8% when L1 was active and 3.4% when no systems were active.  

Due to the nature of driver drowsiness, there is a possibility that drowsy driving events 
may be a function of trip duration, with drowsiness being more likely to occur during trips 
of longer duration. In addition, time-on-task is an important consideration, which refers 
herein to the time elapsed from the start of the trip to the sampled PERCLOS epoch. To 
investigate this, the duration of trips containing a drowsy driving event were compared to 
trips with no drowsy driving events, and the time from trip start to PERCLOS epoch start 
was calculated for both drowsy and non-drowsy trips. In the VCC L2 NDS, the mean trip 
duration of four drowsy driving trips was 31 minutes (SD = 16 min), and time-on-task was 
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17 minutes (SD = 10.4 min). The mean duration of 804 non-drowsy driving trips was 42.3 
minutes (SD = 29.8 min), and time-on-task was 21 minutes (SD = 22.5 min). Thus, the 
drowsy driving trips were shorter in duration; time-on-task prior to the occurrence of a 
drowsy driving event was just over four minutes less than a non-drowsy driving event. 
Figure 20 shows the distribution of all VCC L2 NDS trip durations as a function of whether 
or not the trip contained a drowsy driving event (as determined by the PERCLOS 1 
analysis). 

 

Figure 20. Distribution of trip durations with and without a drowsy driving event for the 
VCC L2 NDS 

In the L2 MFA NDS, the durations of the drowsy and non-drowsy trips were similar, as 
were time-on-task prior to a drowsy and non-drowsy driving event. The mean trip duration 
for 37 drowsy driving trips was 53.9 minutes (SD = 32.9 min), with a time-on-task of 31 
minutes (SD = 31.4 min). For the 835 non-drowsy driving trips, the mean duration was 57.5 
minutes (SD = 38.1 min), with a time-on-task of 27 minutes (SD = 25.0 min). Thus, the 
time-on-task to a drowsy driving event was roughly four minutes longer than a non-drowsy 
driving event. Figure 21 shows the distribution of all L2 MFA NDS trip durations as a 
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function of whether or not the trip contained a drowsy driving event (as determined by the 
PERCLOS 1 analysis).   

 

Figure 21. Distribution of trip durations with and without a drowsy driving event for the L2 
MFA NDS 

As can be seen in Figure 20 and Figure 21, all trips in the VCC L2 NDS and the majority of 
trips in the L2 MFA NDS containing a drowsy driving event were under 60 minutes in 
duration; time-on-task prior to a drowsy driving event was not significantly longer than for 
a non-drowsy driving event. Of the 37 trips in the L2 MFA NDS that included a drowsy 
driving event, 10 occurred under manual driving conditions (i.e., no ADAS active), and 10 
occurred with L1 active. The remaining 17 drowsy driving events occurred under L2 
activation, where both ACC and LKA were activated simultaneously, with one of the trips 
being just over three hours long (181 minutes). Although preliminary, these results indicate 
there is not substantial workload underload that leads to bouts of unusual drowsiness when 
operating with L2 automation relative to manual driving. 
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Research Question 11: Is driver drowsiness more prevalent during SCEs 
that occur when ADAS are active? 

PERCLOS 1 was performed on all SCEs from the VCC L2 NDS and the L2 MFA NDS. The 
number of valid events (i.e., having one minute of data available with at least 80% of video 
frames usable for analysis), the number of events rated “drowsy,” and the prevalence of 
drowsy driving for each ADAS status in both NDSs are presented in Table 27. 

Table 27. Prevalence of drowsy driving during SCEs across all ADAS statuses in the VCC 

L2 NDS and L2 MFA NDS. 

 

ADAS Status 
# of Valid 

PERCLOS Events 

Number of Events Rated 
“Drowsy” 

(>12% PERCLOS 1) 

Drowsy Driving 
Prevalence 

VC
C

 L
2 

N
D

S 

L2 Available 57 1 1.8% 

L2 Active 21 0 0% 

ACC Available 9 0 0% 

ACC Active 13 0 0% 

LKA Available 20 1 5% 

LKA Active 9 0 0% 

L2
 M

FA
 N

D
S 

L2 Active 13 0 0% 

L1 Active 11 0 0% 

None Active 30 0 0% 

Drowsy driving was present in a very small number of SCEs for the VCC L2 NDS, with the 
highest prevalence being 5% when LKA was available, followed by 1.8% when L2 was 
available. Conversely, in the L2 MFA NDS, drowsy driving was not present in any SCEs. 
The number of SCEs in each data set, particularly in the L2 MFA NDS, was also relatively 
small. 
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Research Question 12: How do drivers respond to ADAS alerts? 

In the VCC L2 NDS data set, there were three types of alerts that were identified by the 
machine-vision process (applied only in the Tesla vehicles): FCW and immediate takeover 
events requested that drivers react by putting their hands on the steering wheel. HOW 
prompts – where there was not immediate danger – were analyzed separately from those 
alerts because they lacked the same urgency. Alerts in the L2 MFA NDS were also 
analyzed separately, as they did not include FCW alerts and were specific to lateral 
automation features.  

Response Types to FCW and Immediate Takeover Alerts in the VCC L2 NDS 

Overall, response types varied based on alert types in the VCC L2 NDS. There were no 
instances of alerts occurring when the driver had his/her hands off the wheel. All drivers 
had at least several fingers, one hand, or both hands on the steering wheel just prior to the 
onset of the alert. Table 28 shows the response types for FCW and immediate takeover 
alerts, including response combinations wherein drivers simultaneously engaged in two 
different response types.  
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Table 28. Response types to FCW and immediate takeover alerts in the VCC L2 NDS. 

Response Type % Response to FCW % Response to Immediate 
Takeover 

Engage brakes 50.8% 3.3% 

Instrument cluster glance 0% 36.1% 

Reach for steering wheel 0% 4.9% 

Prepare to brake 3.2% 0% 

Accelerate 1.6% 0% 

Engage brakes + Instrument 

cluster glance 
4.8% 1.6% 

Engage brakes + Reach for 

steering wheel 
22.2% 0% 

Instrument cluster glance + 

Reach for steering wheel 
0% 19.7% 

Instrument cluster glance + 

Prepare to brake  
0% 4.9% 

Other 4.8% 6.6% 

No Response 12.7% 23% 

As seen in Table 28, the majority of VCC L2 NDS drivers responded to FCW alerts by 
engaging the brakes, either as their only response or in combination with a second response 
type. Responses to immediate takeover alerts tended to involve glancing at the instrument 
cluster, either alone or simultaneously with a second response. Given that none of the 
drivers had their hands completely off the steering wheel, the response type of “reach for 
steering wheel” is low. When such action did occur, the drivers had only several fingers or 
one hand on the steering wheel; thus, placing both hands on the steering wheel gave them 
additional control over the vehicle.  
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Response Types to HOW Prompts in the VCC L2 NDS 

Of the 391 hands-on-wheel (HOW) prompts (see Table 3), all occurred when drivers’ hands 
were completely off the steering wheel. As shown in Table 29, the two most frequent 
response types were an instrument cluster glance or reaching for the steering wheel. These 
two responses also happened simultaneously for approximately one-quarter of the HOW 
prompts. Interestingly, approximately 15% of HOW prompts resulted in no response from 
the driver, meaning the driver chose to ignore the prompt and to continue driving with 
his/her hands off the steering wheel. 

Table 29. Response types to HOW prompts in the VCC L2 NDS. 

Response Type Percent 

Engage brakes 0.8% 

Instrument cluster glance 30.4% 

Reach for steering wheel 24.8% 

Adjust grip on steering wheel 0.5% 

Instrument cluster glance + 

Reach for steering wheel 
24.6% 

Other 3.3% 

No Response 15.6% 

Response Types to Alerts in the L2 MFA NDS 

Alerts in the L2 MFA NDS were specific to lateral automation features; thus, these alerts 
were activated when the vehicle required the driver to resume control of the vehicle. Of the 
450 alerts in the L2 MFA NDS (see Table 4), drivers had their hands completely off the 
steering wheel in 119 instances. For the remaining 331 alerts, the drivers had several 
fingers, one hand, or both hands on the wheel just prior to the onset of the alert. The 
response types varied based on whether drivers had their hands on or off the wheel prior to 
the alert. As seen in Table 30, if drivers’ hands were on the wheel, the most frequent 
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response type was “No Response.” This is surprising – as such alerts typically indicate that 
the driver needs to takeover steering of the vehicle.  

The second most frequent response if drivers’ hands were on the wheel was to glance at the 
instrument cluster, either alone or in combination with another response type. If drivers’ 
hands were off the wheel, the most frequent response type was to reach for the steering 
wheel, either alone or at the same time as another response.  

Table 30. Response types to alerts in the L2 MFA NDS. 

Response Type % Hands on Wheel % Hands off Wheel 

Engage brakes 0.6% 0% 

Instrument cluster glance 35.1% 11.8% 

Reach for steering wheel 7.9% 43.7% 

Other 2.1% 0.8% 

Adjust grip on steering wheel 1.8% 0.8% 

Instrument cluster glance + 

Reach for steering wheel 
7.0% 26.1% 

Instrument cluster glance + 

Adjust grip 
7.0% 0% 

No Response 38.4% 16.8% 

Research Question 13: How long does it take drivers to respond to ADAS 
alerts? 

Response times to the various alerts were assessed from the time the alert began to the 
first indication of a response from the driver. In the VCC L2 NDS, drivers responded 
significantly faster to FCW alerts than to immediate takeover alerts (t = -5.85, p < 0.0001), 
with an average response time of 0.15 seconds for FCW alerts compared to 0.51 seconds for 
immediate takeover alerts. Reflecting the lack of urgency associated with HOW prompts in 
the VCC L2 NDS, the drivers’ average response time was 2.23 seconds. Interestingly, the 
response times to alerts in the L2 MFA NDS did not differ significantly based on the 
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position of drivers’ hands (p = 0.36). The average response time when drivers’ hands were 
off the wheel was 0.99 seconds; when their hands were on the wheel, the average response 
time was 0.89 seconds.  

Research Question 14: Is driver drowsiness more prevalent when drivers 
receive ADAS alerts? 

PERCLOS 1 was performed on all alerts and prompts from both data sets that had valid 
data (i.e., one minute of data available with at least 80% of video frames usable for 
analysis). Results were then compared to the corresponding ADAS status baseline 
PERCLOS 1 results from Research Question 10.  

PERCLOS 1 on Alerts from the VCC L2 NDS  

For the FCW alerts, which do not require any specific automation to be active (i.e., such 
alerts can occur during manual driving), there were 55 events with valid PERCLOS 1 data. 
However, none of these events reached the 12% threshold to be defined as drowsy driving 
events.  

For the immediate takeover alerts, which occur under conditions when L2 (i.e., ACC and 
LKA) is active, there were 68 events with valid PERCLOS 1 data. Six of these events 
reached the 12% threshold to be defined as drowsy driving events. Therefore, the 
prevalence of drowsy driving during the occurrence of immediate takeover alerts was 8.8%. 
Compared to the baseline prevalence (0.6%) of drowsy driving when L2 was active (see 
Table 26), it appears the prevalence of drowsy driving was higher when drivers received 
immediate takeover alerts than under normal driving conditions with both systems active. 

HOW prompts only occur under conditions when L2 is active. In the VCC L2 NDS, there 
were 340 events with valid PERCLOS 1 data, 12 of which reached the pre-defined drowsy 
driving threshold. Therefore, the prevalence of drowsy driving during the occurrence of 
HOW prompts was 3.5%. This is higher than the prevalence of drowsy driving (i.e., 0.6%) 
under normal driving conditions with both systems active. 

PERCLOS 1 on Alerts from the L2 MFA NDS 

For the L2 MFA NDS alerts, which occur under L2 active conditions, there were 318 hands-
on-wheel events with valid PERCLOS data, 12 of which reached the pre-defined drowsy 
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driving threshold. In terms of hands-off-wheel events, there were 117 events with valid 
PERCLOS data, three of which reached the drowsy driving threshold. Thus, the prevalence 
of drowsy driving was 3.8% during alerts when drivers had their hands on the steering 
wheel and 2.6% when drivers had their hands off the steering wheel. These results are 
lower when compared to the prevalence of drowsy driving under normal driving conditions 
with both systems active, which was 5.4% in the L2 MFA NDS (see Table 26). 
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Discussion and Conclusions 

Decades of prior research in other domains such nuclear power and commercial flight have 
highlighted the potential consequences of partial automation. Such consequences include 
operator confusion over control authority, reduced workload resulting in boredom that could 
lead to drowsiness or fatigue or an over-reliance on a system that results in reduced 
attention to the primary task. 

One important difference between those industries and the current study is the level of 
training and practice received. Commercial aviators or nuclear power plant operators, for 
example, receive thousands of hours of training and practice prior to certification as 
operators. Conversely, users of automotive technology only receive a minimal set of written 
and verbal instructions prior to use on public roadways in live traffic. 

Saad et al. (2004) proposed a two-phase model involved in the development of behavioral 
adaptation – the learning phase and the integration phase. Building on this model to 
incorporate the results of the current study, we propose a three-phase model of ADAS 
operation:  

1. The “novelty” phase of system use. Since ADAS are generally new to users and 
training and practice are minimal, it may be hypothesized — as was borne out, at 
least anecdotally, in Russell et al. (2018) — that drivers are learning the system 
while using it in real time. This leads to some level of “testing” system use and 
limitations in live traffic. If drivers are not cautious in this testing and learning 
approach, it seems reasonable that risky behaviors and safety-critical circumstances 
could be the result. Moreover, drivers who do not have experience with the systems 
may not trust the systems completely. 

2. The post-novelty operational phase. This phase may be equivocated in other 
domains to a fully trained, but new, operator. Risks here may include cases wherein 
the driver has a mental model of system operation, including cases of transition and 
control authority. This is where overreliance on system capabilities potentially 
develops, and one could expect to encounter SCEs in such circumstances. 

3. The experienced user phase. This is a phase in which the driver has used the system 
repeatedly, understands the system well (e.g., has “tested” the system and perhaps 
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even over-relies on its limited capabilities), and uses the system frequently. This 
phase is where the potential for work underload could manifest itself. An increasing 
level of overreliance could also occur with increased experience, particularly in cases 
where the novelty and post-novelty phases did not result in many (or any) SCEs that 
led to caution on the part of the user.  

There were substantial differences between the results from the VCC L2 NDS and the L2 
MFA studies. Many of these differences could be due to dissimilarities in participants’ 
exposure to the operation phases described above. As detailed in the Methods section, 
several aspects of data collection were different across the studies. These differences, which 
may inform important behaviors in using ADAS features, included: 

1. Length of time in the study. It can be inferred from the NDS data used in the 
current study that a novelty phase existed wherein drivers “tested” the 
systems. Although the exact duration of a typical novelty phase for a user is unclear, 
it is reasonable to assume that it lasts at least several weeks. In essence, it may be 
assumed that participants in the L2 MFA NDS were always in the novelty phase, 
since they had equipped cars for one month at a time. By contrast, the VCC L2 NDS 
data perhaps provided a better snapshot into long-term adaptation and overreliance 
effects. 

2. Level of training received. The L2 MFA NDS subjects were provided detailed, 
comprehensive training that was precisely what the manufacturers 
recommended. Although it is possible the vehicle owners in the VCC L2 NDS 
received some orientation from the various dealers, recent studies (e.g., Abraham et 
al., 2017) suggest that automotive dealers do not adequately “train” drivers on 
ADAS use. Moreover, drivers rarely consult the owner’s manual in full (Leonard, 
2001), and such manuals may not be adequate in delivering instructions relative to 
driving automation (Boelhouwer et al., 2019).  

3. Provided versus owned vehicle. There are known differences as to how drivers 
behave — and the associated risks — when operating familiar (owned) or unfamiliar 
(e.g., rental or leased) vehicles (Perel, 1983). Such differences potentially led to 
several of the result discrepancies between the two studies. However, the results of 
the current study were contrary to prior research. Drivers in L2 MFA NDS had 
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lower SCE rates than VCC L2 NDS, despite the fact the study vehicles were 
provided to the drivers for a relatively short period of time, similar to a rental or 
leased vehicle. 

In general, the results of the VCC L2 NDS showed a greater impact on a number of the 
driver behavioral measures when both lateral and longitudinal automation features (i.e., 
L2: ACC and LKA) were active compared to when these systems were available. Eye-glance 
metrics indicated drivers had their eyes off-road and on non-driving-related tasks more 
frequently and for longer durations when L2 was active compared to any other ADAS 
status (i.e., active or available) (see Table 18 and Table 22). In addition, when L2 was active 
compared to available in the VCC L2 NDS, drivers had approximately 1.5 times the odds of 
engaging in a secondary task and 1.8 times the odds if the secondary task was primarily 
visual, manual, or visual-manual in nature. When these measures are interpreted as 
surrogates for driver distraction, it can be concluded that the use of both lateral and 
longitudinal automation features (i.e., L2 automation) results in greater driver distraction. 
However, it should be acknowledged that this increase in STE with L2 active does not 
necessarily mean ADAS are unsafe. If a driver is going to engage in a secondary task while 
driving, the optimal time to do so would be when L2 is active and momentary diversions of 
the driver’s attention would be less risky than when the driver is in full control of the 
vehicle. It is also possible that drivers specifically engage automation features when they 
plan to engage in a secondary task; thus, while the VCC L2 NDS results indicate the use of 
L2 automation culminated in an increased occurrence of distracted driving behaviors, 
perhaps this is intentional on the part of the driver.  

The VCC L2 NDS results may also suggest that drivers trust the ADAS features, at least 
with some level of extended use. However, were the systems to fail, especially when the 
driver’s attention is focused elsewhere, it is questionable whether the driver would have the 
ability to recover control of the vehicle in time to prevent a crash. While the SCE rates for 
ADAS Active compared to ADAS Available/Inactive were not significantly different in the 
VCC L2 NDS, this may be due to the systems operating as designed or drivers trusting the 
systems in situations where the surrounding roadway and traffic scenarios were such that 
it was relatively safe for the driver to trust the systems. In other words, as long as the 
automation features work as they should, and in operational scenarios where they work 
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well, they may help the driver avoid an SCE. Yet, caution should always be taken not to 
over-trust and over-rely on the systems to maintain driver safety (Inagaki & Itoh, 2013).    

Results from the L2 MFA NDS suggest that drivers who had little to no experience with 
ADAS features did not place the same level of trust in the systems as the drivers in the 
VCC L2 NDS. L2 MFA NDS drivers with no systems active (i.e., under manual driving 
conditions) were more likely to engage in a secondary task than with L1 active (OR = 1.23) 
or L2 active (OR = 1.38). These drivers had nearly 1.3 times the odds of engaging in a 
secondary task when no systems were active compared to one system active if the task was 
primarily visual, manual, or visual-manual and approximately 1.5 times the odds of STE 
when no systems were active compared to L2 active if the task was cognitive in nature. 
Eye-glance metrics also indicated manual driving was more likely to involve longer and 
more frequent eyes-off-road glances and on non-driving-related tasks than when ADAS 
were in use (see Table 18 and Table 22). These results were similar to those demonstrated 
by Russell et al. (2018), who, using this same data set, found distracting behaviors were 
just as prevalent during periods of manual driving or with L1 active as they were when L2 
was active. Thus, these results suggest that, depending on the driver, his/her experience 
with the ADAS features, and the trust he/she has in these systems, manual driving can be 
just as risky, if not riskier, than using ADAS, at least in some circumstances. 

The L2 MFA NDS results provide support for the existence of a novelty phase of ADAS 
operation, wherein drivers are still testing and learning how to use the ADAS. Additional 
support can be found by examining a small number of vehicles in the VCC L2 NDS that 
were owned by drivers for less than three months upon enrollment in the study. Here, five 
vehicles and drivers contributed one-quarter of the SCEs to the data set, 14 of which 
occurred with ADAS active and 23 that occurred when ADAS were available or inactive. 
Despite this seemingly high number of SCEs, these five “novel” drivers in the VCC L2 NDS 
did not have higher SCE rates than the study sample as a whole due to their higher 
number of driving minutes. Thus, while their SCE count seemed high, these five drivers 
also accounted for more minutes of driving, resulting in a per-driver SCE rate of 0.20 per 
1,000 minutes. Interestingly, when these five “novel” drivers were excluded from the VCC 
L2 NDS data set, the remaining “experienced” drivers had twice the odds of engaging in a 
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visual, manual, or visual-manual secondary task when L2 was active. This may be an 
indication of experienced drivers’ over-trust in the systems. 

To investigate the potential impact of technological differences in lane centering versus 
lane keeping assist (LKA) on distracted driving behavior, STE and eye-glance metrics were 
selected for the subset of Teslas within the VCC L2 NDS (i.e., the vehicle make and model 
that was known to be equipped with true lane-centering technology). Drivers of those 
vehicles equipped with lane centering did not exhibit any particular differences in STE 
when ADAS were active versus when ADAS were available. However, when L2 was active, 
the proportion of long glances (i.e., > 2 seconds) on non-driving-related tasks was higher 
than the study sample as a whole (9.3% versus 6.7%, respectively). This indicates that 
drivers may feel more comfortable looking away from the road at non-driving-related tasks 
when their vehicle is equipped with a proactive lane-keeping system, such as lane 
centering, rather than a reactive system, such as LKA. This is a difference that should be 
investigated further, with additional studies targeting vehicles equipped with lane-
centering systems. It also further highlights how many different factors play a role in driver 
behavior when it comes to advanced automation features.  

The low baseline observation of drowsy driving in the VCC L2 NDS was contrary to what 
was expected, especially under scenarios when L2 was active. Previous research into 
automation and underload (Young & Stanton, 2004; 2006) and the relationship between 
underload, monotony, and passive task-related fatigue (Matthews et al., 2009) would seem 
to indicate that, when both lateral and longitudinal systems are active (i.e., L2 active), 
drivers would be more likely to experience driver drowsiness. However, this was not the 
case in the current study, which may be an indication that the use of these ADAS features 
does not negatively impact driver alertness. Again, although preliminary, these results 
suggest there is not substantial workload underload that leads to bouts of unusual 
drowsiness when operating with L2 automation relative to manual driving. It is worth 
reiterating, though, that the overall observation of drowsy driving events, regardless of 
ADAS status, was low in the VCC L2 NDS (0.6%), which may imply there is something 
different about these drivers and their trips. For example, if the majority of the trips were 
taken during the day and for short duration, then the observation of driver drowsiness 
would be low. Drowsy driving prevalence was higher in the L2 MFA NDS, particularly 
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when both systems were active (5.4%), which may suggest drivers with little to no 
experience using the ADAS are more impacted by drowsiness than experienced drivers. 

Similar to previous research using the SHRP 2 NDS (Dingus et al., 2016), the observation 
of performance errors in both the VCC L2 NDS and L2 MFA NDS data sets was low (1.6% 
and 1.7%, respectively). Judgment errors, however, were much higher in the current study 
than in the SHRP 2 NDS. This difference was due to the higher occurrence of speeding (i.e., 
≥ 10 mph above the posted speed limit) in the current study. In the VCC L2 NDS, the 
occurrence of speeding decreased from 17.5% to 11% when drivers went from L2 Available 
to L2 Active. Thus, the use of ADAS decreased the occurrence of speeding. Drivers in the L2 
MFA NDS showed the opposite trend, with speeding being more prevalent when L2 was 
active compared to when no systems were active (19% versus 16%, respectively). It is 
possible that the more inexperienced drivers (i.e., inexperienced with automated features) 
in the L2 MFA NDS misunderstood how the systems worked and assumed the system 
would adjust the speed accordingly when entering a new speed zone. Such drivers may not 
have realized they had to reset/adjust their speed when the speed zones changed, resulting 
in a greater propensity to exceed the speed limit when L2 was active. Further investigation 
is merited.     

The results from the eye-glance and STE analyses of the VCC L2 NDS provide concerning 
safety implications for the use of lateral and longitudinal automation features combined 
(i.e., L2). When activated simultaneously, these systems resulted in drivers engaging more 
frequently in distracting secondary tasks (58%) than when both systems were available 
(47%). This resulted in greater EORT than when systems were available but not active (i.e., 
2.02 seconds L2 Active versus 1.29 seconds L2 Available). This was not the case for drivers 
in the L2 MFA NDS, who appeared to still be in the novelty phase of operation. Drivers in 
the L2 MFA NDS engaged more frequently in secondary tasks with no systems active (i.e., 
under manual driving conditions) than with L2 active (69% versus 60%). They also spent 
more time with their eye off-road with no systems active compared to when L2 was active 
(2.70 seconds versus 2.51 seconds). Here, behavioral adaptation did not seem to occur 
within the first month of driving a vehicle equipped with ADAS. As outlined in Sullivan et 
al. (2016), behavioral adaptation likely occurs after the driver has developed an idea of how 
the ADAS operate and has incorporated that insight into his/her own driving. In other 
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words, drivers first acquire a vehicle equipped with advanced safety features (e.g., ACC and 
LKA), then they learn and test these features to determine the circumstances under which 
the systems work and when they do not work (or do not work as reliably). Once the driver 
has determined situations wherein he/she feels comfortable trusting the ADAS to relieve 
him/her of vehicular control, potentially negative behavioral adaptation begins to occur. 
Adding to this danger is the possibility the driver may not fully understand the limitations 
of the ADAS and may overestimate its ability to prevent crashes (McDonald et al., 2018). As 
such, drivers need to be aware of potential pitfalls that exist even after they have learned 
when and how to use the systems. Unintentional dangers exist for novel drivers, as well as 
experienced drivers. Becoming complacent and over-reliant on the systems are very real 
dangers, especially for drivers who have not experienced any repercussions of such behavior 
during the novelty or post-novelty phase. Negative behavioral adaptation could thus have 
real and tragic consequences for drivers of ADAS-equipped vehicles. The possible safety 
benefits of these systems are undeniable, but it is imperative that potential lack of driver 
awareness of unintentional dangers be evaluated and addressed.      

Limitations 

The following limitations should be considered when interpreting the results of this study. 
First, there is a potential interpretive caveat that should be raised relating to the 
comparison of periods of time when ADAS were active and when ADAS were available but 
inactive. Given that the drivers had complete control over when to use, or not use, the 
various ADAS features, there may be instances when the driver elected not to use the 
ADAS simply because he/she would prefer to drive themselves. On the contrary, there may 
be instances when the driver specifically chose to use L2 automation because he/she 
intended to engage in a secondary task that required them to take their eyes off the forward 
roadway for a long duration of time. The choice to use the ADAS was dependent on driver-
based reasoning in every instance, and this reasoning was not available to the researcher; 
thus, there may be alternative interpretations to the differences found between ADAS 
active and ADAS available.  

Second, there were cases where small sample sizes prevented strong statistical analyses. 
For instance, the prevalence of driver behaviors was relatively low, as was the number of 
SCEs. This presented a problem when attempting to break the numbers down into specific 
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ADAS statuses, especially for the VCC L2 NDS that comprised six ADAS groupings (e.g., 
ACC, LKA, L2 active and ACC, LKA, L2 available). As a result, epochs were grouped 
according to system active or system available/inactive, thereby still allowing for the 
comparison of interest to be made.     

Third, it should be noted that, relative to STE, it is inherently difficult to assess cognitive 
distraction in a naturalistic driving environment. NDSs preclude the use of intrusive 
instrumentation typically used to measure and assess brain activity. As such, only 
observable instances of cognitive distraction (e.g., interacting with passengers, 
talking/listening on a hands-free cell phone) were used in the current study; instances of 
mind-wandering, or being “lost in thought,” were not included. 

Additionally, processing of future advanced-vehicle NDS data could benefit from refinement 
of the machine-learning process. The process requires the same amount of training and 
testing for one individual vehicle make and model as for multiple vehicles of the same make 
and model. Thus, the VCC L2 NDS study population, which originally comprised 20 
additional vehicles excluded from the current study, was too diverse to complete machine-
learning on all 50 vehicles. The vehicles that were excluded typically did not have easily 
distinguishable dash icons to represent ADAS status. It would, therefore, be beneficial for 
future studies to pay closer attention to, and be more selective of, the vehicles chosen to be 
included in the study design. Another issue that impacted the machine-learning process 
was glare on the dash, which interfered with the view of the ADAS icons. When glare 
obstructed the view of a small portion of the icon, ADAS status (i.e., active, available, or 
inactive) became unknown. Such portion of a trip was automatically excluded from the 
baseline epoch pool, meaning the available data pool became smaller. Unfortunately, this 
was not an easy problem to solve as the majority of driving was completed during daylight 
hours and the dashes of some of the vehicles (e.g., Tesla) seemed particularly susceptible to 
glare. 

Finally, NDSs involve the participation of volunteer drivers; as such, these studies may 
involve self-selection bias.   
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