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Foreword 

As more active driving systems are integrated into vehicles, the role and responsibilities of 
drivers using these technologies will change fundamentally from conventional vehicles. 
Vehicle automation now offers extended control of vehicle’s speed, headway and lane 
position, but calling upon drivers to continuously monitor the road and traffic environment. 
This report summarizes an on-road study of drivers’ workload, arousal and attentiveness 
when driving vehicles equipped with Level 2 automation. 

 
Results summarized in this report should help researchers, automobile industry and 
government entities better understand driver performance, behavior and interactions in 
vehicles with advanced technologies. 

 

C. Y. David Yang, Ph.D. 

Executive Director 
AAA Foundation for Traffic Safety 
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Executive Summary 

The Society of Automotive Engineers defines six levels of vehicle automation, ranging from 
Level-0, no automation, to Level-5, full automation (SAE, 2016). Currently, vehicles with 
Level-2 automation are equipped with systems that maintain lateral and longitudinal 
control. One requirement for Level-2 automation is for drivers to remain engaged with the 
driving task and monitor the environment at all times. In the case of automated control 
system failure or limitation, the driver must be able to safely regain control of the vehicle. 
The current research compared and contrasted the driver’s experience when operating a 
vehicle under Level-2 automation with that of operating the same vehicle when automation 
was not engaged (i.e., Level-0). 

This study involved an on-road evaluation of drivers between the ages of 21-64 operating up 
to four different vehicles that supported Level-2 automation on both urban and more rural 
roadways. The research design was 4 (Vehicle: Cadillac CT6, Nissan Rogue, Tesla Model 3, 
Volvo XC90) x 2 (Age: 21-42 vs. 43-64) x 2 (Automation: Level-0 vs. Level-2) x 2 (Interstate: 
I-80 vs. I-15) factorial with 24 younger and 24 older participants tested in each of the 
vehicles. 

A variety of dependent measures were collected to assess driver’s arousal and workload as 
they operated these vehicles. These included measures of reaction time and hit rate in the 
Detection Response Task (DRT), power in the parietal alpha spectra of 
electroencephalographic (EEG) brain activity, electrocardiographic (ECG) measures of 
heart rate and heart rate variability, and survey measures assessing nervousness, 
inattention, and excitement. Data from the DRT, EEG, ECG, and survey results were 
analyzed using linear mixed-effects models. 

Consistent with role and responsibility of drivers described in the SAE framework, the data 
provide evidence for slightly enhanced engagement with the driving task and monitoring of 
the driving environment when participants operated the vehicle under Level-2 automation. 
Under those conditions, parietal alpha and DRT hit rates were lower and DRT reaction was 
longer compared to manual driving conditions, suggesting that participants paid more 
attention to the driving environment. Participants also reported driving under partial 
(Level-2) automation to be more exciting and resulting in more nervousness. 

Though statistically significant, the magnitude of the differences between Level-0 and 
Level-2 automation was small accounting for — at most — 2.7% of the variance across 
measures. Even so, all the dependent measures trended in the direction of more attention 
directed to the driving task under Level-2 automation. There were no meaningful 
differences in arousal or workload between Level-0 and Level-2 automation. If there were 
meaningful differences, the study was sufficiently powered to detect them. 

The current research protocol required that a researcher was present in the vehicle, 
ensuring that the data were accurately recorded, that the participant completed all 
specified conditions, and that safety standards were met. It is possible that the participant’s 
behavior may change in the absence of a researcher or data monitoring equipment. Future 
research should examine the driver’s behavior over much longer intervals to determine if 
this pattern is altered with greater experience with Level-2 automation (i.e., do driver 
transition from a “Novelty” ownership phase to “Post Novelty” and then to “Experienced” 
phases as suggested by Dunn, Dingus, & Soccolich, 2019). If the same pattern of data is 
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observed across longer intervals of exposure, it would suggest that drivers are able to 
sustain their attention to the driving task and monitor the driving environment. However, 
it is possible that additional familiarity with Level-2 automation could decrease driver 
excitement and nervousness and increase levels of trust and overconfidence. 
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Introduction 

Several manufacturers offer systems that can automate the control of vehicle speed, 
following distance, and lane position (e.g., Tesla-Autopilot, Nissan-ProPilot, Volvo-Pilot 
Assist, Cadillac-Super Cruise, and Audi-Traffic Jam Pilot). By automating lateral and 
longitudinal vehicle control, these systems have the potential to reduce or eliminate single- 
vehicle and rear-end highway crashes. However, the technology is not perfect and requires 
drivers to maintain vigilance towards the traffic environment and readiness to take over 
vehicle control at all times. Ironically, the changing role of drivers from active controller to 
passive monitor may gradually erode driver attention, arousal, and readiness to respond 
which could potentially undermine possible safety benefits. Several research articles have 
been published on automation and its effects on arousal and sustained attention. However, 
very little research has looked at how the real-world use of partial vehicle automation 
affects driver workload and physiological arousal. Results presented in this report suggest 
that drivers may be better than expected at maintaining adequate attention to the driving 
task and that their arousal levels during partial automation are similar to manual driving 
conditions. 

Levels of Automation 

Commercially available vehicle automation generally encompasses technologies that are 
designed to automate lateral and longitudinal vehicle control. These technologies are often, 
though not always, marketed for use in highway environments, including Interstate use 
and stop-and-go traffic. SAE J3016 (2016) specifies six levels of vehicle automation ranging 
from 0 (no automation) to 5 (full automation) (See Figure 1). Vehicles with both adaptive 
cruise control and lane-centering technology that can be simultaneously engaged fall under 
SAE Level-2 automation. There are currently several Level-2 vehicles for sale in the United 
States and Tesla has announced that near-term versions of Autopilot, to be released in 
2020, will be “Feature Complete” and support “Full Self Driving.” Whether these updates 
constitute Level-3 performance remains to be seen. Thus far, there are no true Level-3 
vehicles on the market. However, Tesla’s Navigate on Autopilot and Audi’s Traffic Jam 
Assist come the closest. 



2  

 
 

Figure 1. Levels of automation as specified by the Society of Automotive Engineers (SAE, 
2016) 

 
A requirement of Level-2 automation is that the operator is always monitor the driving 
task. To ensure that a minimum level of driver engagement and attention is present, 
vehicle manufacturers employ a variety of driver monitoring approaches that range from 
camera-based face and eye tracking (e.g., GM Super Cruise) to steering torque sensors (e.g., 
Tesla and Volvo). Vehicles also use different sensors to monitor the driving environment 
(e.g., LiDAR, Radar, Sonar, Machine Vision, GPS, etc.) with varying integration strategies. 
This results in wide variability in vehicle performance for sensing and responding to the 
driving environment. The impact of these differences on driver workload, arousal, and 
performance is not well understood. 

A further differentiating factor of Level-2 vehicles is the way the systems are activated, how 
they communicate their state to the driver, and their engagement/disengagement 
strategies. Together, these design differences result in varying experiences for the driver 
with potential consequences for workload, arousal, and performance. 

Attention Management 

The Yerkes-Dodson model suggests that the relationship between attention, arousal and 
performance can be specified by an inverted-U shaped function (Yerkes & Dodson, 1908), 
where a theoretically optimal level of performance is attained with a moderate level of 
arousal (Cohen, 2011). Within this framework, attention directly moderates arousal 
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whereby too much attention can ratchet up arousal — leading to increased stress and 
anxiety with poorer performance outcomes and disorganized behavior (Derakshan & 
Eysenck, 2009). 

Driving situations that demand high and sustained levels of attention can lead to rapid 
performance declines, increased stress, and anxiety (Langner & Eickhoff, 2013). 
Performance under these conditions may be hindered and distractibility heightened, 
especially in the presence of task-irrelevant or threatening information (Derakshan & 
Eysenck, 2009). Adverse effects of over-arousal in the monitoring of partial vehicle 
automation have been shown to increase the onset of fatigue and hasten vigilance 
decrement (Greenlee, DeLucia, Newton, 2019). Conversely, lack of driver stimulation may 
also lead to fatigue, absent-mindedness, disengagement, and complacency (Manly, 
Robertson, Galloway, & Hawkins, 1999). In extreme cases, drivers may even fall asleep at 
the wheel, a major cause of driving accidents and fatalities (Fischer, 2016; Tefft, 2012). 

As noted, within SAE automation Level-2, drivers are required to be ready and able to take 
over vehicle control at any time. However, with increasing automation, the role of drivers 
changes from active controller to passive monitor, which may make it more difficult for 
drivers to maintain optimal arousal. The extent to which driving under Level-2 automation 
may lead to over or under-arousal is not well understood. However, several high profile 
crashes, online videos, and preliminary research suggests a heightened potential for 
distraction and fatigue in incidents involving vehicle automation (National Transportation 
Safety Board [NTSB], 2017, 2018; see also Gaspar & Carney, 2019). 

Safety 

A 2017 report by the National Highway Traffic Safety Administration (NHTSA) suggests 
that Tesla vehicles equipped with automatic steering are 40% less likely to crash than those 
not equipped with the feature (Habib, 2017). In October of 2018, Tesla began voluntarily 
releasing quarterly crash statistics that compile data taken from their advanced vehicle 
telematics recording systems. Plotted in Figure 2, these data are provided for cases where 
Autopilot is engaged with other Active Safety Systems, where Autopilot is disengaged but 
other Active Safety Systems are engaged, and where neither Autopilot nor the Active Safety 
Systems are engaged. Tesla also reported the NHTSA released statistics on police-reported 
crashes for comparison (“Tesla Vehicle Safety Report”, 2019). Notably, Tesla data suggests 
that drivers were more than two times less likely to crash when Autopilot is engaged, that 
crash rates with Autopilot are decreasing, and that Tesla drivers are less likely to crash, in 
general, than the US national average. 

Several agencies have pointed out limitations on the numbers that Tesla has released, 
including that Tesla drivers are not representative of US drivers and that Tesla's data fails 
to account for roadway type (Krisher, 2018). A reanalysis of the NHTSA 2017 Tesla findings 
by the Quality Control Systems Corporation (2019) revealed several methodological issues 
with the analysis. A correction of these issues reversed the claims made by NHTSA and 
suggested a relative increase in crash risk with automatic steering. Whether partial 
automation increases or decreases crash rates in an open and evolving issue. Given 
constant improvements to computing power, crash avoidance technology and Artificial 
Intelligence, it is clear that hard crash numbers will remain elusive as technology continues 
to advance. 
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Figure 2. Million miles traveled per crash for Tesla vehicles using combinations of Autopilot 
and Active Safety Systems. Data are provided by Tesla quarterly. 
https://www.tesla.com/VehicleSafetyReport 

 
 

A related issue is the changing role of the driver with increasing automation and the way in 
which drivers engage with automation. Video instrumentation of privately owned vehicles 
suggests that drivers engage Level-2 systems 34.8% of the time and that, contrary to 
general findings on vigilance decrement in automation (e.g., Grier et al., 2003; Raz & 
Buhle, 2006), drivers continue to actively monitor the roadway even when Level-2 
automation is engaged (Fridman et al., 2019; Hatfield et al., 2019). A similar set of findings 
has been published by the National Advanced Driving Simulator researchers at the 
University of Iowa. Their research suggests that drivers monitor the roadway similarly in 
both Level-0 and Level-2 driving modes (Gaspar & Carney, 2019) but that drivers tended to 
increase the frequency of long glances away from the roadway with partial automation. 
Furthermore, Gaspar and Carney found that Level-2 systems were used during almost 80% 
of highway driving. Surveys provided to drivers that experience Level-2 systems suggest 
that trust increases with use and that familiarity can decrease stress and increase feelings 
of security (Endsley, 2017; Gaspar & Carney, 2019). 

A study by the Virginia Tech Transportation Institute in 2019 (Dunn, Dingus, & Soccolich, 
2019) suggests that drivers may transition through several phases of interaction with 
vehicle automation, moving from an initial “Novelty” phase to a “Post-Novelty” phase and 
finally to an “Experienced” phase. Dunn et al. suggest that each of these phases can be 
characterized by a different set of driving behaviors that gradually transition from high 
system experimentation, high arousal and high vigilance to over-reliance, low arousal and 

https://www.tesla.com/VehicleSafetyReport
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low vigilance. Initial support for the theory is provided through a complementary set of 
naturalistic driving studies that looked at behavior in a group of mostly Level-1 and some 
Level-2 automated vehicles. In these studies, drivers either agreed to have their own 
vehicle instrumented with a video recording system, or borrowed a vehicle provided by the 
research team. In both cases, all vehicles supported Adaptive Cruise Control and most 
supported some form of Lane Keeping Assist (i.e., Level-1 vehicle automation). Some of the 
vehicles also provided Lane Centering (i.e., Level-2 automation when coupled with ACC). 
Baseline driving epochs, where automation was not engaged, were selected to match 
participant and weather conditions. Results suggest that drivers that were lent vehicles for 
a month maintained vigilance during Level-1/Level-2 engagement but that drivers who 
owned their vehicle were more likely to engage in secondary task distraction events when 
automation was active. While these results are suggestive, drivers are likely selective about 
when to engage automation and the performance and attention requirements of driving 
under Level-1 and Level-2 automation are likely quite different. 

Current Study 

The aim of the current study is to compare and contrast driver’s arousal and workload 
under no automation (Level-0) and partial automation (Level-2). In order to maximize the 
generalizability of these findings, the study involved an on-road evaluation of drivers 
between the ages of 21-64 operating up to four different vehicles that supported Level-2 
automation on both urban and more rural roadways. Prior research found that older adults 
often struggle with advanced electronics in the vehicle (Cooper et al., 2019), yet if such 
technology is implemented correctly and users are given adequate training, this cohort of 
drivers may benefit the most from its usage. To provide a comprehensive assessment of 
driver’s arousal and workload, we use a diverse set of physiological, performance, and 
subjective measures. Below, each of these measures and their respective response to over 
and under-arousal is presented. 

The Detection Response Task (DRT) is a standard research tool that has been developed 
and validated to measure the cognitive workload of drivers (International Organization of 
Standardization [ISO] 17488, 2016). The DRT is a simple stimulus-response task that 
requires drivers to press a microswitch attached to their finger each time they feel a small 
vibration or detect the illumination of an LED. The DRT is sensitive to driving difficulty 
(Bruyas & Dumont, 2013), visual demands of secondary tasks (Cooper, Castro, & Strayer, 
2016), and general cognitive load (Bengler, Kohlmann, & Lange, 2012). The Psychomotor 
Vigilance Task (PVT), an older task with a structure like the DRT, has been validated as a 
measure of vigilance (Gartenberg et al., 2012; Temple et al., 2000; Yarnell, Lopresti, 
Lanlokun, & Balkin, 1982), fatigue (Drummond et al., 2005), and arousal (Gunzelmann et 
al., 2007). Stimulus-response tasks like the DRT and PVT often provide two outcome 
measures, reaction time and hit rate. As workload increases, reaction time goes up and hit 
rate goes down (Young, Hseih, & Seaman, 2013). Similarly, increased fatigue, sleep 
deprivation, and reduced vigilance also lead to increased reaction time and reduced hit rate 
in the PVT. The DRT is sensitive to measuring both over and under-arousal but cannot 
effectively discriminate between the two states. 

Electrocardiography (ECG) is a method for measuring the electrical activity of the heart. 
Evaluations of heart rate and heart rate variability are perhaps the most common 
approaches to characterize the systematic ECG waveform (Agrafioti, Hatzinakos, & 



6  

Anderson, 2012). Several studies have established that both heart rate and heart rate 
variability are sensitive to over and under-arousal in driving (Jiao, Li, Chen, Wang, & Qi, 
2004; Mehler, Reimer, & Wang, 2011; Tozman, Magdas, MacDougall, & Vollmeyer, 2015). A 
comprehensive review by Lohani, Payne, and Strayer (2019) found that heart rate 
decreases with drowsiness, as vigilance decreases, and with the use of partial automation. 
Additionally, heart rate variability increases with drowsiness, fatigue, and disengagement. 
By contrast, heart rate increases with workload and stress and heart rate variability 
decreases with workload, stress, and heightened vigilance. 

Electroencephalography (EEG) is the measurement of the summated electrical activity of 
the brain, recorded non-invasively from electrodes on the scalp. EEG provides high 
temporal resolution (within milliseconds) and therefore a direct record of neural activity in 
real-time (see Lohani, Payne, & Strayer, 2019). Oscillatory components of EEG can be 
decomposed into canonical spectral frequencies (e.g., Delta ~0.5-4 Hz, Theta ~4-8 Hz, Alpha 
~8-12 Hz, and Beta ~12-30 Hz) using Fourier analysis (Cohen, 2014). These frequency 
bands have been studied in relation to various neurocognitive functions. For example, 
research has shown that fatigue increases alpha power (Chuang et al., 2018; Käthner, 
Wriessnegger, Müller-Putz, Kubler, & Halder, 2014), while an increase in arousal and 
cognitive workload suppresses alpha power (Mun, Whang, Park, & Park, 2017). Therefore, 
the power in the alpha frequency band can be measured to index changes in arousal and 
cognitive demand while driving. Alpha power in the parietal regions of the brain has also 
been studied in relation to selective visual attention. Higher alpha power suggests lower 
visual engagement with the environment whereas lower alpha power suggests higher 
visual engagement (Bowman et al., 2017; Foxe & Snyder, 2011). Parietal alpha power is 
highest when an individual’s eyes are closed (Goldman, Stern, Engel, & Cohen, 2002; see 
Appendix A for additional information). 

Several survey questions help to supplement, support, and disambiguate DRT, EEG, and 
ECG measures. Survey measures in the current study centered around constructs of 
nervousness, inattention, and excitement help to understand the driver’s experience as they 
operate vehicles under Level-0 and Level-2 automation. 

If driving under Level-2 vehicle automation decreases arousal through fatigue, drowsiness, 
and disengagement, we would have expected to see increased reaction time and reduced hit 
rate (due to lapses of attention), reduced heart rate, increased heart rate variability, and 
increased EEG Alpha power, coupled with lower self-reported nervousness, increased 
inattention, and decreased excitement. Conversely, if Level-2 automation leads to increased 
arousal and attention toward the driving task, we would have expected to see increased 
DRT reaction time and reduced hit rate (due to increased attention directed towards 
driving). Other expected outcomes would have been increased heart rate and reduced heart 
rate variability, reduced EEG parietal Alpha power, higher self-reported nervousness, 
decreased inattention, and increased excitement (see Table 1). 
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Table 1. Expected direction of Level-2 automation (compared to Level-0 automation) for each 
dependent measure used in the current research for over and under-arousal. 

 Under Arousal Over Arousal 
Parietal Alpha ↑ ↓ 
Heart Rate ↓ ↑ 
RMSSD* ↑ ↓ 
DRT-Reaction time ↑ ↑ 
DRT-Hit Rate ↓ ↓ 
Nervousness ↓ ↑ 
Inattention ↑ ↓ 
Excitement ↓ ↑ 
Note: *Root Mean Squared of Successive Differences 

 
Method 

Participants 

Seventy-four participants (27 female) were recruited via University of Utah Institutional 
Review Board (IRB) approved flyers and by referral from previous participants. Seventy- 
one participants were included in the final analysis; data from three were lost due to 
equipment malfunctions. 

The younger cohort, ages 21-42 (Mage = 28.82, SDage = 6.41), was made up of 39 participants 
(13 females) and the older cohort, ages 43-64 (Mage = 52.72 y, SDage = 6.33), was made up of 
32 participants (12 female). This broad range of age groups was recruited in order to ensure 
a representative sample of participants across the age range. All participants had a valid 
driver’s license, no at-fault accidents in the past two years, had driven at least an average 
of ten hours per month, had sustained no injuries that caused a loss of consciousness in the 
last two years, had no history of neurological disorders, had no heart conditions, and were 
not pregnant or planning to become pregnant. Upon arrival at the University of Utah, 
participants confirmed that they had normal or corrected to normal vision, six or more 
hours of sleep the previous night, a valid driver’s license on their person, and a BAC level at 
0.00% (verified using a BACtracⓇ breathalyzer). 

Following University of Utah policy, participants were required to pass a 20-minute online 
defensive driving course and certification test. To ensure participants held a clean driving 
record and were eligible to participate in the study, a motor vehicle record report was 
obtained by the University of Utah’s Division of Risk Management prior to enrollment. 
Compensation was prorated at $20 per hour. Participants were awarded a $10 bonus after 
completing their second session, a $15 bonus after completing their third session, and a $25 
bonus after completing their fourth session. 

Four vehicles were selected to compare and contrast their Level-2 automation capabilities, 
resulting in a 4 (Vehicle) x 2 (Age Cohort) x 2 (Level of Automation) x 2 (Interstate) 
factorial design. In total, 71 participants (39 from the younger cohort and 32 from the older 
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cohort) were tested. Some participants were tested in more than one vehicle (on different 
days). As shown in Table 2, 24 of the participants drove in all four vehicles, 19 drove three 
out of the four vehicles, 11 drove in two of the four vehicles, and 17 drove in only one out of 
the four vehicles. This planned missing data design (e.g., Graham, Taylor, Olchowski, & 
Cumsille, 2006; Little & Rhemtulla, 2013) was used to facilitate participant recruitment 
and was appropriately handled by the data analysis. 

 

Table 2. Number of vehicles driven by a participant broken down by age cohort. 

Age Cohort Tested in 
1 Vehicle 

Tested in 
2 Vehicles 

Tested in 
3 Vehicles 

Tested in 
4 Vehicles 

Younger 11 8 11 9 

Older 6 3 8 15 

Note: e.g., 9 younger and 15 older participants were tested in all 4 of the vehicles. 

 
Stimuli and Apparatus 

Vehicles 

A 2018 Cadillac CT6 Premium Luxury with Super Cruise, 2019 Nissan Rogue SL Premium 
with ProPILOT Assist, 2018 Tesla Model 3 AWD/Long Range with Autopilot, and a 2018 
Volvo XC90 Momentum with Pilot Assist were used in this study. Each of these vehicles 
were equipped with the partial vehicle automation that centered the vehicle within the lane 
(e.g., Lane Centering) and maintained following distance and speed (e.g., Adaptive Cruise 
Control). Activated together, these features fulfilled the SAE requirements for Level-2 
vehicle automation. 

Equipment 

Detection Response Task (DRT). A vibrotactile variant of DRT was used to probe driver 
attention. A small vibration motor was taped to the participant’s left bicep and a 
microswitch was attached to either the index or middle finger of the left hand so that it 
could be depressed against the steering wheel when the participant noticed the onset of the 
stimulus. The left bicep, rather than the standard left collarbone placement, was selected in 
order to reduce potential interference with the ECG recordings. Millisecond resolution 
response time to the vibrotactile onset was recorded via an embedded microcontroller and 
stored on the host computer (See ISO 17488, 2016). 

Following the ISO 17488 guidelines (2016), the vibrotactor emitted a small vibration 
stimulus, similar to a vibrating cell phone. This stimulus was presented pseudo-randomly 
every 3-5 seconds. Participants were instructed to respond as quickly as possible to the 
stimulus by pressing the microswitch against the steering wheel. If no response was made 
within 1 second, the vibration stimulus turned off. 



9  

Electrocardiography. Electrical activity generated by the heart was recorded using 
BiopacⓇ Smart Center systems at a 2000 Hz sampling rate. Electrodes were placed on the 
bottom of the left and right ribs, and on the right collarbone (3-Lead system). The electrode 
placement areas were sterilized with an alcohol swab and Signa Gel was applied to the 
electrode before being placed on the participant. 

Electroencephalography. Electrical activity generated by the brain was recorded using 
BiopacⓇ Smart Center systems at a 2000 Hz sampling rate. Three passive, NATUS 
Neurology Grass reusable EEG electrodes were placed along the midline—frontal (Fz), 
central (Cz), and parietal (Pz)—as well as a ground electrode on the center of the forehead 
and a reference electrode on the right mastoid bone. Two electrooculogram (EOG) electrodes 
were placed above and below the right eye (vertical). These electrodes captured muscle 
movement of the eye to record eye blinks for later data processing. Scalp electrode 
placement was based on the International 10-20 system (Jasper, 1958). 

Eye electrode placement was determined by aligning the electrodes with the middle of the 
pupil. The electrode placement areas were sterilized with an alcohol swab and then prepped 
with NuPrep Skin Prep Gel and cotton swabs to clear away dead skin cells at each electrode 
site. Ten20 adhesive gel and medical tape were used to secure the electrodes to the scalp, 
forehead, mastoid, and face. Impedance levels were kept below 10kΩ, as verified using 
BIOPAC’s EL-CHECKⓇ electrode impedance checker. The participant’s field of view and 
range of motion were not impeded when wearing the electrodes. 

Other Equipment. An iPad mini 4 was used to capture all survey responses which were 
hosted on REDCap, a 21 CFR Part 11, FISMA, and HIPAA-compliant data capture 
repository (see Appendix B). A Garmin Virb XE action camera was mounted on the 
dashboard of each vehicle and used to collect video of the road. Each vehicle was also 
outfitted with a Logitech Pro Webcam on the dashboard to collect video of the participant’s 
face during data collection. Dell XPS 13 laptops were used to record incoming physiological 
measures and administer the DRT. A BACtracⓇ breathalyzer was used to measure BAC 
levels. 

Procedure 

Experimental Design 

The experimental design was a 4 (Vehicle: Cadillac CT6, Nissan Rogue, Tesla Model 3, 
Volvo XC90) x 2 (Age: 21-42 vs. 43-64) x 2 (Automation: Level-0 vs. Level-2) x 2 (Interstate: 
I-80 vs. I-15) factorial with seventy-one participants included in the analyses. Each 
participant was tested in between 1 and 4 vehicles (see Table 2). Linear mixed models are 
specifically designed to accommodate this form of missing data (i.e., they are appropriate 
for unbalanced designs with different numbers of observations for different participants). 

Surveys and Physiological Set-up 

Prior to arrival, participants reviewed a training document for the specific vehicle they 
were expected to drive and watched a short video about the vehicle’s partial automation. 
Upon arrival, participants were re-screened for eligibility, shown the driving routes, and 
reviewed the training document and video. Participants then completed a series of seven 
questionnaires on a tablet (see Appendix B). They first indicated their demographic 
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characteristics, health, and state of fatigue on the Demographic Questionnaire and Brief 
Compound Fatigue Instrument. This was followed by the nine-item Beliefs about 
Automated Driving Systems Survey which measured their evaluations and expectations of 
the attributes and performance of advanced driving assistance systems. Participants 
finished by filling out the 12-item Proneness to Boredom Scale (Vodanovich, Wallace, & 
Kass, 2005), the 15-item short form of the Barratt Impulsivity Scale (Spinella, 2007), and 
the Big Five Inventory-2 (Soto & John, 2017). These personality scales were administered 
to explore individual differences predicting arousal and attention during Level-0 and Level- 
2 driving. While filling out these questionnaires, participants were simultaneously fitted 
with EEG, ECG, and a respiration belt around their chest. 

Training 

After all of the surveys were completed and the physiological equipment was attached, the 
participant and research administrator walked to the testing vehicle where the participant 
would familiarize themselves with the vehicle by adjusting the mirrors, seat, steering 
wheel, etc. Meanwhile, the research administrator ensured the safety of the vehicle by 
wiping any debris from external cameras and sensors, confirming that the horn, wipers, 
and blinkers functioned properly, and ensuring that tire pressure levels were adequate. 
Before driving the vehicle, participants sat in the driver’s seat and were trained on how to 
activate the partial automation of the specific vehicle. Before leaving, 4 minutes of eyes- 
closed baseline EEG data were recorded. Participants were then instructed to drive toward 
the training route. 

As shown in Figure 3, two routes were chosen for data collection. One route (I-80) was a low 
trafficked, curvy Interstate, shown in blue. The other route (I-15) was a more heavily 
trafficked, relatively straight Interstate, shown in green. The training route (I-215), shown 
in red, was driven prior to the experimental session. Participants traveled along all routes 
at the speed limit or 5 mph slower with a research administrator present in the passenger 
seat to monitor for safety and data collection. 
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Figure 3. A map of the driving routes used in the study 
 
 

Participants drove southbound from the University of Utah to I-215 where the training 
route began. Once on the freeway and traveling the speed limit, the research administrator 
instructed participants to engage Level-2 partial automation. Once engaged, the participant 
would practice multiple ways to disengage, change lanes, increase and decrease speed, and 
experience system warnings. The research administrator verbally verified with the 
participant that they were confident interacting with the system’s features and were 
comfortable engaging the system on their own. The participant used the remaining time on 
the training route to ask questions and gain further exposure to the partial automation in 
the vehicle. Participants were randomly assigned to a counterbalance that determined 
which route, I-15 or I-80, would be driven first, as well as the order of the driving condition; 
either under partial automation or under no automation (i.e., Level-2 and Level-0 
automation, respectively). 

Both routes, I-15 and I-80, were split into two experimental blocks. For each route, the first 
experimental drive consisted of driving away from Salt Lake City, while the second 
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consisted of driving back toward Salt Lake City. Participants were instructed to drive the 
vehicle either with partial automation engaged or without partial automation during each 
experimental drive. Each experimental drive began once the participant was up to speed, 
had passed any construction zone or object on the shoulder of the road, and felt safe and 
ready to begin testing. Each experimental drive was approximately 20 minutes in length. 
The first two minutes consisted of a baseline period containing only the driving task, which 
was followed with the addition of the DRT that continued until the end of the experimental 
drive. 

Experimental Blocks 

Immediately prior to the first experimental drive, participants were fitted with the DRT 
microswitch on either their index or middle finger of their left hand and the vibrotactor 
taped to their left bicep as per ISO 17488 specifications (2016). To train the participant on 
how to respond to the vibrotactor, the research administrator monitored the participant 
while they performed 10 practice trials with response times under 500 milliseconds while 
the vehicle was parked. After exhibiting a full understanding of the DRT and the operation 
of the vehicle, the participant drove toward the freeway to begin data collection. 

Participants drove in two separate conditions: with partial automation engaged (Level-2), 
or without automation (Level-0). When in the partial automation condition, participants 
were instructed to engage the vehicle’s partial automation when it was safe to do so. While 
driving in the no automation condition (Level-0), participants were instructed not to engage 
with any of the vehicle's partial automation capabilities (e.g. Adaptive Cruise Control or 
Lane Keep Assist). 

I-15 Route. The first experimental drive on this route started near a gas station in Salt 
Lake City (Exit 307 on I-15) and began when the participant was driving northbound on I- 
15 toward Layton, Utah, approximately 27 miles away. Data collection ended ½ mile from 
exit 337 for 700 S. A break was then given at a nearby gas station. The second experimental 
drive on this route began once the participant was driving southbound on I-15. Data 
collection ended ½ mile from exit 307 for 400 S, where the research administrator and 
participant would stop again for a break. If the I-80 route had already been completed, the 
research administrator would drive the participant back to the University of Utah. If the I- 
80 route had not been completed, the participant and research administrator would have 
lunch before continuing to the second route. 

I-80 Route. A 5-minute section of the road was used to familiarize the participant with 
how the partial automation in the vehicle behaved on curvy sections of the road. This 
occurred before data collection on I-80. The first experimental drive on this route started 
near East Canyon (Exit 134 on I-80), and began when the participant was driving 
eastbound on I-80 towards Wanship, Utah, approximately 21 miles away. Data collection 
ended ½ mile from exit 155 for Wanship. A break was then given at a nearby gas station. 
The second experimental drive on this route began once the participant was driving 
westbound on I-80. Data collection ended ½ mile from exit 134 for East Canyon. If the I-15 
route had already been completed, the research administrator would drive the participant 
back to the University of Utah. If the I-15 route had not been completed, the research 
administrator would drive from a golf course to a gas station in Salt Lake City for a break 
where the participant and research administrator would have lunch before continuing to 
the second route. 
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At the end of each experimental drive, participants completed a modified version of the 
PANAS (Watson, Clark, & Tellegen, 1988) that assessed both their affective states and 
attentional processes during driving (see Appendix B). They were then given a ten-minute 
break. After all experimental drives were complete, participants filled out the Driving 
Experiences and Intentions Measure and Evaluations of Vehicle Automated Driving 
Systems questionnaires while the research administrator drove the participant back to the 
University of Utah. 

Each experimental drive was collected in safe and normal driving conditions. Participants 
were instructed to abandon the DRT if disruptions to the natural driving environment 
occurred. Participants resumed the DRT when they felt it was safe to do so. The research 
administrator flagged scenarios “Do not use” to exclude from data processing due to 
miscellaneous reasons (e.g. debris on the road, heavy traffic, equipment malfunctions, etc.). 
Data collection ceased during any construction zones or when other hazards occurred on the 
road. 

Data Handling and Dependent Measures 

Detection Response Task (DRT) 

DRT data were processed following guidelines outlined in ISO 17488 (2016). All response 
times under 100 milliseconds or over 2500 milliseconds were eliminated from the overall 
calculation for reaction time. Non-responses or responses that were made after 2.5 seconds 
from the stimulus onset were coded as misses. The DRT-related dependent measures used 
in the study are: 

● Reaction time: Defined as the sum of all valid reaction times to the DRT divided by 
the number of valid reaction times. 

● Hit rate: Defined as the number of correct and valid responses divided by the total 
number of stimuli presented during each condition. 

Electrocardiography (ECG) 

Heart rate is typically measured in the number of heart beats per minute. Heart rate data 
were cleaned using BIOPAC Acqknowledge (5.0) scripts, in conjunction with a visual 
inspection from research assistants. This process began with a band-pass filter with a low- 
frequency cutoff of 1 Hz and a high-frequency cutoff of 35 Hz. Each heart beat was marked 
at its highest peak (known as QRS peaks), and were used for analysis. QRS peaks were 
then identified, marked and kept for analysis. To ensure clean data, the heart rate channel 
was visually inspected for QRS anomalies. In the event of a missing peak, one was 
interpolated so as to be in the middle of the two surrounding QRS peaks. The two 
dependent measures extracted from the ECG data are: 

● Heart rate: Defined as the mean number of beats per minute, calculated using 
sequential 60-second epochs. 

● Heart rate variability: Defined as the root mean square of successive differences 
(RMSSD) 
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Electroencephalography (EEG) 

EEG data were cleaned and processed using MATLAB and the EEGLAB (Delorme & 
Makeig, 2004) toolbox. EEG recordings were downsampled to 250 Hz and band-pass filtered 
with a low-frequency cutoff of 0.1 Hz and a high-frequency cutoff of 30 Hz. Data were then 
segmented into 1-second epochs. Ocular artifacts were corrected for using Gratton’s method 
of eye movement correction in order to retain epochs that were contaminated by artifacts 
(Gratton, Coles, & Donchin, 1983). The average power at each frequency between 1 and 30 
Hz was extracted using a Fast Fourier Transform (see Appendix A for details). Power in the 
alpha band (between 8-12 Hz) was then averaged across epochs, resulting in a separate 
estimate for each participant in each Vehicle, Level of Automation, and Interstate. 

● Parietal alpha power: Defined as the average power in the alpha band between 8-12 
Hz at the parietal (Pz) electrode. 

Surveys 

The 18 items from the Affect and Attention checklist were factor analyzed using principal 
component analysis (see Appendix B). The Kaiser-Meyer-Olkin measure of sampling 
adequacy was .72 and Bartlett’s test of sphericity was significant, χ2(153) = 518.26, p < .001, 
indicating that the data were suitable for structure detection. An initial factor analysis 
indicated that 3 factors accounted for a total of 52.9% of the variance for the entire set of 
variables and provided the most interpretable solution. The eigenvalues leveled off after the 
3 factors. 

An oblimin rotation was performed because the factors were expected to be correlated. A 
total of 5 items were not included in the 3-factor solution. Irritable, alert, and unrelated 
activities were eliminated because they did not have a primary factor loading of over 0.40. 
Comfortable and bored were not included because they had loadings over 0.40 on two 
factors. 

The first factor accounted for 24.9% of the variance and was labeled “Nervousness.” It 
consisted of 5 items (loadings in parentheses) – scared (-.843), nervous (-.827), distressed (- 
.789), confident (.644), and relaxed (.640). The second factor accounted for 17.2% of the 
variance and was labeled “inattention” because all of the items assessed directly or 
indirectly the level of inattention to driving. “Inattention” also consisted of 5 items – 
daydreamed (.887), thoughts wandered (.866), thoughts about problems (.674), focused on 
road (-.611), and sleepy (.459). Finally, factor three explained 10.9% of the variance and was 
labeled “Excitement”. This factor was based on excited (.786), enthusiastic (.771), and 
cheerful (.535). 

The three dependent measures from the factor analysis are: 

● Nervousness: the latent variable in the factor analysis loading on the ratings of 
“scared,” “nervous,” “distressed,” “confident,” and “relaxed” obtained in the survey. 

● Inattention: the latent variable in the factor analysis loading on the items that 
assessed directly or indirectly the level of inattention to driving in the survey. 

● Excitement: the latent variable in the factor analysis loading on the ratings of 
“excited,” “enthusiastic,” and “cheerful” obtained in the survey. 
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Results 

Data from the DRT, ECG, EEG, and Survey results were analyzed using linear mixed- 
effects models in R (R Core Team, 2019; version 3.6.0). Models were run using the lme4 
package (Bates, Mächler, Bolker, & Walker, 2015; version 1.1-21). The repeated subjects 
factor was input into each model as a random intercept with other factors of interest 
alternately entered as fixed effects. Interactions between conditions were analyzed through 
the comparison of models where factors were specified as interactive to models where 
factors were specified as additive. A model comparison approach using a Likelihood Ratio 
Test was then used to assess the goodness of each model fit. These evaluations returned p- 
values which compared the full linear effects model to a partial model (see Winter, 2013). 
This statistical approach has the advantage of analyzing all available data while adjusting 
fixed effects, random effects, and likelihood ratio test estimates for missing data. Summary 
characteristics of the main effects and interactions are presented below. 

Electroencephalography 

Power in the alpha frequency band over the parietal regions of the brain was extracted from 
the EEG data in order to assess visual engagement and arousal. We expected that if driving 
in Level-2 automation increases visual engagement and arousal, parietal alpha power 
would decrease. On the other hand, if driving in Level-2 automation decreases visual 
engagement and arousal due to fatigue or drowsiness, parietal alpha power would increase 
(Bowman et al., 2017; Foxe & Snyder, 2011). 

All EEG data files were manually inspected offline in order to assess the quality of the 
data. The inspector was blind to the condition of each file. Some individual files were lost 
due to either an electrode falling off, electrical interference between the wireless EEG 
transmitters and the BioPac Smart Center, or a human error in data collection. After 
offline inspection, the usable dataset consisted of 182 eyes-closed files, 168 I-15 Level-0 
automation files, 167 I-15 Level-2 automation files, 172 I-80 Level-0 automation files, and 
171 I-80 Level-2 automation files. The linear mixed-effects models utilized in the analysis 
accounted for the missing data. 

Figures 4-7 present the main effects of Vehicle, Age, Automation, and Interstate on parietal 
alpha. Table 3 presents the results of the multi-level modeling. There were significant 
effects of Automation and Interstate. 
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Figure 4. Parietal alpha plotted as a function of the vehicle. Error bars reflect the standard 
error of the mean. The effect of Vehicle (Cadillac: M = 2.26, SD = 1.45; Nissan: M = 2.31, SD 
= 1.45; Tesla: M = 2.33, SD = 1.50; Volvo: M = 2.28, SD = 1.50) was not significant (χ2 (3) = 
2.58, p = 0.46; R2 = 0.001). 
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Figure 5. Parietal alpha plotted as a function of the participant’s age. Error bars reflect the 
standard error of the mean. The effect of Age (Young: M = 1.95, SD = 0.80; Old: M = 2.66, 
SD = 1.88) was not significant (χ2 (1) = 1.73, p = 0.19; R2 = 0.02). The lack of significance 
was the result of entering the participant as a random intercept. 
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Figure 6. Parietal alpha plotted as a function of the level of automation. Error bars reflect 
the standard error of the mean. The effect of Automation (Level-0: M = 2.35, SD = 1.50; 
Level-2: M = 2.24, SD = 1.44) was significant (χ2 (1) = 3.87, p = 0.049; R2 = 0.001). 
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Figure 7. Parietal alpha plotted as a function of the Interstate. Error bars reflect the standard 
error of the mean. The effect of Interstate (I-15: M = 2.33, SD = 1.49; I-80: M = 2.26, SD = 
1.46) was significant (χ2 (1) = 5.14, p = 0.02; R2 = 0.001). 
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Table 3. Parietal Alpha 

Variable Chi-square df p R2 

Vehicle 2.578 3 0.461 0.001 
Age 1.734 1 0.188 0.022 
Automation 3.874 1 0.049* 0.001 
Interstate 5.144 1 0.023* 0.001 
Vehicle x Age 5.789 3 0.122 0.001 
Vehicle x Automation 0.701 3 0.873 0.000 
Vehicle x Interstate 4.458 3 0.216 0.000 
Age x Automation 1.059 1 0.303 0.001 
Age x Interstate 0.895 1 0.344 0.000 
Automation x Interstate 0.016 1 0.900 0.000 
Vehicle x Age x Automation 8.783 10 0.553 0.002 
Vehicle x Age x Interstate 12.370 10 0.261 0.002 
Vehicle x Automation x Interstate 6.440 10 0.777 0.001 
Age x Automation x Interstate 2.005 4 0.735 0.001 
Vehicle x Age x Automation x Interstate 19.170 25 0.789 0.003 
Note: R Squared values represent the Marginal R2 difference score from the comparison model. 
Significance Code: `*` < .05. 

 
Electrocardiography 

Two types of data were extracted from the electrocardiograph (ECG) record: heart rate and 
heart rate variability. A total of 965,362 point estimates of heart rate (sampled once per 
second) were generated from the Biopac software. A first pass removal of outliers trimmed 
results that were less than 40 bpm or greater than 120 bpm. This cleaning removed 3,104 
(0.3%) of the point estimates from the full data set. A second pass removed data that were 
+/- 3 Standard Deviations from the mean for each subject. This removed a further 7,160 
(0.7%) of data. After this cleaning procedure, cells for each condition (Vehicle x Age x 
Automation x Interstate) contained an average of 1,237 (SD = 278) heart rate point 
estimates. 

Heart rate variability, measured by Root Mean Squared of Successive Differences 
(RMSSD), was calculated in blocks of 60 seconds. A total of 12,573 blocks of data were 
generated for analysis. Results that were +/- 3 Standard Deviations from a subject mean 
were removed. This removed 58 (0.4%) 1-minute summary blocks. Remaining blocks were 
aggregated across each condition (Vehicle x Age x Automation x Interstate). An average of 
16 (SD = 2.7) blocks were aggregated per condition to generate the cell means for analysis. 
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Heart Rate 

Figures 8-11 present the main effects of Vehicle, Age, Automation, and Interstate on heart 
rate. Table 4 presents the results of the multi-level modeling. There were significant effects 
of Vehicle and Age. 

 
 
 
 
 

Figure 8. Heart rate, expressed as beats per minute (BPM), plotted as a function of the 
vehicle. Error bars reflect the standard error of the mean. The effect of Vehicle (Cadillac: M 
= 73.62, SD = 11.61; Nissan: M = 73.97, SD = 9.62; Tesla: M = 73.07, SD = 9.52; Volvo: M = 
73.49, SD = 8.92) was significant (χ2 (3) = 10.29, p = 0.016; R2 = 0.004). 
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Figure 9. Heart rate, expressed as beats per minute (BPM), plotted as a function of the 
participant’s age. Error bars reflect the standard error of the mean. The effect of Age 
(Young: M = 75.85, SD = 9.89; Old: M = 71.24, SD = 9.52) was significant (χ2 (1) = 3.89, p = 
0.048; R2 = 0.043). 
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Figure 10. Heart rate, expressed as beats per minute (BPM), plotted as a function of the 
level of automation. Error bars reflect the standard error of the mean. The effect of 
Automation (Level-0: M = 73.59, SD = 9.76; Level-2: M = 73.50, SD = 10.18) was not 
significant (χ2 (1) = 0.18, p = 0.68; R2 < 0.001). 
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Figure 11. Heart rate, expressed as beats per minute (BPM), plotted as a function of the 
Interstate. Error bars reflect the standard error of the mean. The effect of Interstate (I-15: 
M = 73.37, SD = 10.16; I-80: M = 73.72, SD = 9.79) was not significant (χ2 (1) = 0.81, p = 
0.37; R2 < 0.001). 
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Table 4. Heart Rate (BPM) 

Variable Chi- 
square 

df p R2 

Vehicle 10.293 3 0.016* 0.004 
Age 3.894 1 0.048* 0.043 
Automation 0.176 1 0.675 0.000 
Interstate 0.814 1 0.367 0.000 
Vehicle x Age 7.091 3 0.069 0.002 
Vehicle x Automation 0.619 3 0.892 0.000 
Vehicle x Interstate 1.550 3 0.671 0.000 
Age x Automation 1.560 1 0.212 0.000 
Age x Interstate 0.529 1 0.467 0.000 
Automation x Interstate 0.002 1 0.966 0.000 
Vehicle x Age x Automation 9.879 10 0.451 0.003 
Vehicle x Age x Interstate 9.506 10 0.485 0.003 
Vehicle x Automation x Interstate 2.931 10 0.983 0.001 
Age x Automation x Interstate 2.192 4 0.701 0.001 
Vehicle x Age x Automation x 
Interstate 

15.204 25 0.937 0.005 

Note: R Squared values represent the Marginal R2 difference score from the comparison model. 
Significance Code: `*` < .05. 
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Heart Rate Variability: Root Mean Squared of Successive Differences (RMSSD) 

Figures 12-15 present the main effects of Vehicle, Age, Automation, and Interstate on heart 
rate variability. Table 5 presents the results of the multi-level modeling. There were 
significant effects of Vehicle and Age. The Vehicle x Age interaction was also significant but 
accounted for a very small percentage of the overall variance (0.007) and were not 
indicative of a systematic trend. 

 
 
 

Figure 12. Heart rate variability, expressed as the Root Mean Squared of Successive 
Differences (RMSSD), plotted as a function of the vehicle. Error bars reflect the standard 
error of the mean. The effect of Vehicle (Cadillac: M = 28.40, SD = 14.76; Nissan: M = 26.89, 
SD = 13.05; Tesla: M = 28.60, SD = 15.11; Volvo: M = 24.27, SD = 11.82) was significant (χ2 

(3) = 22.71, p = <.001; R2 = 0.011). 
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Figure 13. Heart rate variability, expressed as the Root Mean Squared of Successive 
Differences (RMSSD), plotted as a function of the participant’s age. Error bars reflect the 
standard error of the mean. The effect of Age (Young: M = 32.48, SD = 15.00; Old: M = 
21.64, SD = 9.96) was significant (χ2 (1) = 13.09, p = <.001; R2 = 0.12). 
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Figure 14. Heart rate variability, expressed as the Root Mean Squared of Successive 
Differences (RMSSD), plotted as a function of the level of automation. Error bars reflect the 
standard error of the mean. The effect of Automation (Level-0: M = 27.00, SD = 13.70; 
Level-2: M = 27.11, SD = 13.98) was not significant (χ2 (1) = 0.04, p = 0.85; R2 < 0.001). 
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Figure 15. Heart rate variability, expressed as the Root Mean Squared of Successive 
Differences (RMSSD), plotted as a function of the Interstate. Error bars reflect the standard 
error of the mean. The effect of Interstate (I-15: M = 27.19, SD = 13.64; I-80: M = 26.91, SD 
= 14.04) was not significant (χ2 (1) = 0.16, p = 0.69; R2 < 0.001). 
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Table 5. Heart Rate Variability (RMSSD) 

Variable Chi-square df p R2 

Vehicle 22.706 3 <.001*** 0.011 
Age 13.086 1 <.001*** 0.123 
Automation 0.036 1 0.850 0.000 
Interstate 0.164 1 0.685 0.000 
Vehicle x Age 14.649 3 0.002** 0.007 
Vehicle x Automation 0.308 3 0.959 0.001 
Vehicle x Interstate 1.298 3 0.730 0.001 
Age x Automation 1.291 1 0.256 0.001 
Age x Interstate 0.376 1 0.540 0.000 
Automation x Interstate 0.006 1 0.937 0.000 
Vehicle x Age x Automation 17.207 10 0.070 0.007 
Vehicle x Age x Interstate 17.583 10 0.062 0.007 
Vehicle x Automation x Interstate 1.660 10 0.998 0.001 
Age x Automation x Interstate 2.300 4 0.681 0.001 
Vehicle x Age x Automation x Interstate 22.117 25 0.629 0.007 
Note: R Squared values represent the Marginal R2 difference score from the comparison model. 
Significance Codes: `**` < .01, `***` < .001. 

 
 

Detection Response Task (DRT) 

A total of 185,947 DRT stimuli were available for analysis. Of these, 9,013 were coded as 
misses (e.g., no response within 2,500ms of stimulus onset) and 176,808 stimuli were coded 
as hits (e.g., within 100-2500ms of stimulus onset). An additional 3,579 responses (~2%) 
were removed that were outside +/- 3 standard deviations of the mean of each participant. 
These cleaning procedures left an average of 233 (SD = 40) valid reaction times for each 
participant in each aggregated cell (Vehicle x Age x Automation x Interstate). 

Hit rate results averaged across the total of valid hits and misses. This expanded data set 
included an average of 244 (SD = 38.7) potential responses (hits + misses) for each 
participant per cell (Vehicle x Age x Automation x Interstate). 

Reaction Time 

Figures 16-19 present the main effects of Vehicle, Age, Automation, and Interstate on DRT 
reaction time. Table 6 presents the results of the multi-level modeling. There were 
significant effects of Vehicle, Automation, and Interstate. 
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Figure 16. DRT reaction time plotted as a function of vehicle. Error bars reflect the 
standard error of the mean. The effect of Vehicle (Cadillac: M = 463.60, SD = 173.60; 
Nissan: M = 469.87, SD = 174.59; Tesla: M = 474.60, SD = 158.45; Volvo: M = 511.53, SD = 
168.51) was significant (χ2 (3) = 21.62, p = <.001; R2 = 0.009). 
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Figure 17. DRT reaction time plotted as a function of the participant’s age. Error bars 
reflect the standard error of the mean. The effect of Age (Young: M = 455.00, SD = 163.59; 
Old: M = 504.20, SD = 171.93) was not significant (χ2 (1) = 1.19, p = 0.28; R2 = 0.013). The 
lack of significance was the result of entering the participant as a random intercept, 
effectively partialling out any variance between participants across the age spectrum. 
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Figure 18. DRT reaction time plotted as a function of the level of automation. Error bars 
reflect the standard error of the mean. The effect of Automation (Level-0: M = 474.24, SD = 
170.76; Level-2: M = 485.59, SD = 168.32) was significant (χ2 (1) = 4.29, p = 0.038; R2 = 
0.001). 
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Figure 19. DRT reaction time plotted as a function of the Interstate. Error bars reflect the 
standard error of the mean. The effect of Interstate (I-15: M = 471.16, SD = 166.99; I-80: M 
= 488.57, SD = 171.83) was significant (χ2 (1) = 8.91, p = 0.003; R2 = 0.003). 
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Table 6. DRT reaction time 

Variable Chi-square df p R2 

Vehicle 21.617 3 <.001*** 0.009 
Age 1.193 1 0.275 0.013 
Automation 4.286 1 0.038* 0.001 
Interstate 8.911 1 0.003** 0.003 
Vehicle x Age 4.404 3 0.221 0.002 
Vehicle x Automation 2.142 3 0.544 0.001 
Vehicle x Interstate 3.894 3 0.273 0.002 
Age x Automation 0.155 1 0.694 0.000 
Age x Interstate 0.404 1 0.525 0.000 
Automation x Interstate 0.039 1 0.844 0.000 
Vehicle x Age x Automation 7.489 10 0.679 0.004 
Vehicle x Age x Interstate 9.971 10 0.443 0.004 
Vehicle x Automation x Interstate 6.494 10 0.772 0.002 
Age x Automation x Interstate 0.980 4 0.913 0.001 
Vehicle x Age x Automation x Interstate 14.527 25 0.952 0.006 
Note: R Squared values represent the Marginal R2 difference score from the comparison model. 
Significance Codes: `*` < .05, `**` < .01, `***` < .001. 

 
Hit Rate 

Figures 20-23 present the main effects of Vehicle, Age, Automation, and Interstate on DRT 
hit rate. Table 7 presents the results of the multi-level modeling. There were significant 
main effects of Vehicle, Age, Automation, and Interstate. 
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Figure 20. DRT hit rate plotted as a function of vehicle. Error bars reflect the standard 
error of the mean. The effect of Vehicle (Cadillac: M = 0.95, SD = 0.06; Nissan: M = 0.96, SD 
= 0.05; Tesla: M = 0.95, SD = 0.05; Volvo: M = 0.96, SD = 0.05) was significant (χ2 (3) = 
14.58, p = 0.002; R2 = 0.011). 
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Figure 21. DRT hit rate plotted as a function of the participant’s age. Error bars reflect the 
standard error of the mean. The effect of Age (Young: M = 0.97, SD = 0.03; Old: M = 0.94, 
SD = 0.06) was significant (χ2 (1) = 7.27, p = 0.007; R2 = 0.057). 
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Figure 22. DRT hit rate plotted as a function of the level of automation. Error bars reflect 
the standard error of the mean. The effect of Automation (Level-0: M = 0.96, SD = 0.05; 
Level-2: M = 0.95, SD = 0.06) was significant (χ2 (1) = 33.65, p < 0.001; R2 = 0.021). 
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Figure 23. DRT hit rate plotted as a function of the Interstate. Error bars reflect the 
standard error of the mean. The effect of Interstate (I-15: M = 0.96, SD = 0.05; I-80: M = 
0.95, SD = 0.06) was significant (χ2 (1) = 4.06, p = 0.044; R2 = 0.003). 
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Table 7. DRT Hit Rate 

Variable Chi-square df p R2 

Vehicle 14.584 3 0.002** 0.011 
Age 7.269 1 0.007** 0.057 
Automation 33.648 1 <.001*** 0.021 
Interstate 4.058 1 0.044* 0.003 
Vehicle x Age 8.976 3 0.030* 0.006 
Vehicle x Automation 2.870 3 0.412 0.001 
Vehicle x Interstate 1.072 3 0.784 0.001 
Age x Automation 4.872 1 0.027* 0.003 
Age x Interstate 0.286 1 0.593 0.000 
Automation x Interstate 0.355 1 0.551 0.001 
Vehicle x Age x Automation 18.734 10 0.044* 0.012 
Vehicle x Age x Interstate 11.645 10 0.310 0.007 
Vehicle x Automation x Interstate 8.079 10 0.621 0.005 
Age x Automation x Interstate 5.776 4 0.217 0.003 
Vehicle x Age x Automation x Interstate 27.901 25 0.312 0.016 
Note: R Squared values represent the Marginal R2 difference score from the comparison model. 
Significance Codes: `*` < .05, `**` < .01. 

 
The Vehicle x Age, Age x Automation and Vehicle x Age x Automation interactions were 
also significant. These higher order interactions accounted for relatively small proportions 
of the variance (e.g., R2 <= 0.012) and were not indicative of a systematic trend. 

 
 

Survey Data 

Nervousness is the latent variable in the factor analysis loading on the ratings of “scared”, 
“nervous”, “distressed”, “confident”, and “relaxed” obtained in the survey. Subjective ratings 
of nervousness ranged from 1 (very slightly or not at all) to 5 (extremely). 

Figures 24-27 present the main effects of Vehicle, Age, Automation, and Interstate on 
Nervousness. Table 8 presents the results of the multi-level modeling. There were 
significant main effects of Vehicle and Automation. 
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Figure 24. Nervousness (1 = very slightly or not at all, 5 = extremely) plotted as a function 
of vehicle. Error bars reflect the standard error of the mean. The effect of Vehicle (Cadillac: 
M = 1.71, SD = 0.53; Nissan: M = 1.77, SD = 0.53; Tesla: M = 1.84, SD = 0.64; Volvo: M = 
1.77, SD = 0.54) was significant (χ2 (3) = 12.63, p = 0.006; R2 = 0.010). 
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Figure 25. Nervousness (1 = very slightly or not at all, 5 = extremely) plotted as a function of 
the participant’s age. Error bars reflect the standard error of the mean. The effect of Age 
(Young: M = 1.84, SD = 0.58; Old: M = 1.71, SD = 0.54) was not significant (χ2 (1) = 1.99, p = 
0.16; R2 = 0.014). The lack of significance was the result of entering the participant as a 
random intercept, effectively partialling out any variance between participants across the 
age spectrum. 
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Figure 26. Nervousness (1 = very slightly or not at all, 5 = extremely) plotted as a function of 
the level of automation. Error bars reflect the standard error of the mean. The effect of 
Automation (Level-0: M = 1.68, SD = 0.49; Level-2: M = 1.86, SD = 0.61) was significant (χ2 

(1) = 38.67, p = <.001; R2 = 0.027). 
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Figure 27. Nervousness (1 = very slightly or not at all, 5 = extremely) plotted as a function of 
the Interstate. Error bars reflect the standard error of the mean. The effect of Interstate (I- 
15: M = 1.75, SD = 0.53; I-80: M = 1.79, SD = 0.59) was not significant (χ2 (1) = 1.45, p = 
0.23; R2 = 0.001). 
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Table 8. Nervousness 

Variable Chi-square df p R2 

Vehicle 12.627 3 0.006** 0.010 
Age 1.986 1 0.159 0.014 
Automation 38.671 1 <.001*** 0.027 
Interstate 1.445 1 0.229 0.001 
Vehicle x Age 4.631 3 0.201 0.004 
Vehicle x Automation 8.768 3 0.033* 0.006 
Vehicle x Interstate 0.916 3 0.822 0.001 
Age x Automation 3.188 1 0.074 0.002 
Age x Interstate 6.625 1 0.010* 0.005 
Automation x Interstate 4.160 1 0.041* 0.003 
Vehicle x Age x Automation 20.289 10 0.027* 0.013 
Vehicle x Age x Interstate 16.284 10 0.092 0.011 
Vehicle x Automation x Interstate 19.267 10 0.037* 0.013 
Age x Automation x Interstate 14.575 4 0.006** 0.010 
Vehicle x Age x Automation x Interstate 43.662 25 0.012* 0.027 
Note: R Squared values represent the Marginal R2 difference score from the comparison model. 
Significance Codes: `*` < .05, `**` < .01, `***` < .001. 

 
Several interactions were also significant (see Table 8). All higher order interactions are 
provided for completeness, however, given the relatively small effect sizes and lack of a 
systematic trend, the data are difficult to interpret. 
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Inattention is the latent variable in the factor analysis loading on the items that assessed 
directly or indirectly the level of inattention to driving in the survey. Subjective ratings of 
inattention ranged from 1 (very slightly or not at all) to 5 (extremely). 

Figures 28-31 present the main effects of Vehicle, Age, Automation, and Interstate on 
Inattention. Table 9 presents the results of the multi-level modeling. There were significant 
main effects of Age and Interstate. 

 
 
 

Figure 28. Inattention (1 = very slightly or not at all, 5 = extremely) plotted as a function of 
vehicle. Error bars reflect the standard error of the mean. The effect of Vehicle (Cadillac: M 
= 2.18, SD = 0.83; Nissan: M = 2.08, SD = 0.83; Tesla: M = 2.15, SD = 0.86; Volvo: M = 2.19, 
SD = 0.85) was not significant (χ2 (3) = 5.67, p = 0.13; R2 = 0.003). 
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Figure 29. Inattention (1 = very slightly or not at all, 5 = extremely) plotted as a function of 
the participant’s age. Error bars reflect the standard error of the mean. The effect of Age 
(Young: M = 2.33, SD = 0.83; Old: M = 1.97, SD = 0.81) was significant (χ2 (1) = 9.30, p = 
0.002; R2 = 0.081). 
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Figure 30. Inattention (1 = very slightly or not at all, 5 = extremely) plotted as a function of 
the level of automation. Error bars reflect the standard error of the mean. The effect of 
Automation (Level-0: M = 2.17, SD = 0.81; Level-2: M = 2.13, SD = 0.87) was not significant 
(χ2 (1) = 1.02, p = 0.31; R2 < 0.001). 
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Figure 31. Inattention (1 = very slightly or not at all, 5 = extremely) plotted as a function of 
the Interstate. Error bars reflect the standard error of the mean. The effect of Interstate (I- 
15: M = 2.23, SD = 0.87; I-80: M = 2.07, SD = 0.80) was significant (χ2 (1) = 18.27, p < 0.001; 
R2 = 0.009). 
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Table 9. Inattention 

Variable Chi-square df p R2 

Vehicle 5.665 3 0.129 0.003 
Age 9.298 1 0.002** 0.081 
Automation 1.022 1 0.312 0.000 
Interstate 18.268 1 <.001*** 0.009 
Vehicle x Age 8.639 3 0.035* 0.005 
Vehicle x Automation 5.714 3 0.126 0.002 
Vehicle x Interstate 2.035 3 0.565 0.001 
Age x Automation 0.040 1 0.842 0.000 
Age x Interstate 1.951 1 0.163 0.001 
Automation x Interstate 2.937 1 0.087 0.002 
Vehicle x Age x Automation 15.462 10 0.116 0.009 
Vehicle x Age x Interstate 13.594 10 0.192 0.008 
Vehicle x Automation x Interstate 11.330 10 0.332 0.006 
Age x Automation x Interstate 5.671 4 0.225 0.003 
Vehicle x Age x Automation x Interstate 25.962 25 0.410 0.012 
Note: R Squared values represent the Marginal R2 difference score from the comparison model. 
Significance Codes: `*` < .05, ` **` < .01, `***` < .001. 

 
Excitement is the latent variable in the factor analysis loading on the ratings of “excited,” 
“enthusiastic,” and “cheerful” obtained in the survey. Subjective ratings of excitement 
ranged from 1 (very slightly or not at all) to 5 (extremely). 

Figures 32-35 present the main effects of Vehicle, Age, Automation, and Interstate on 
Excitement. Table 10 presents the results of the multi-level modeling. There were 
significant main effects of Vehicle, Automation, and Interstate. 
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Figure 32. Excitement (1 = very slightly or not at all, 5 = extremely) plotted as a function of 
vehicle. Error bars reflect the standard error of the mean. The effect of Vehicle (Cadillac: M 
= 2.74, SD = 0.96; Nissan: M = 2.54, SD = 0.93; Tesla: M = 2.63, SD = 0.90; Volvo: M = 2.59, 
SD = 1.00) was significant (χ2 (3) = 42.56, p < 0.001; R2 = 0.019). 
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Figure 33. Excitement (1 = very slightly or not at all, 5 = extremely) plotted as a function of 
the participant’s age. Error bars reflect the standard error of the mean. The effect of Age 
(Young: M = 2.55, SD = 0.91; Old: M = 2.70, SD = 0.98) was not significant (χ2 (1) = 1.05, p = 
0.31; R2 = 0.011). The lack of significance was the result of entering the participant as a 
random intercept, effectively partialling out any variance between participants across the 
age spectrum. 
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Figure 34. Excitement (1 = very slightly or not at all, 5 = extremely) plotted as a function of 
the level of automation. Error bars reflect the standard error of the mean. The effect of 
Automation (Level-0: M = 2.55, SD = 0.96; Level-2: M = 2.69, SD = 0.93) was significant (χ2 

(1) = 12.64, p < 0.001; R2 = 0.005). 
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Figure 35. Excitement (1 = very slightly or not at all, 5 = extremely) plotted as a function of 
the Interstate. Error bars reflect the standard error of the mean. The effect of Interstate (I- 
15: M = 2.56, SD = 0.94; I-80: M = 2.69, SD = 0.95) was significant (χ2 (1) = 9.39, p = 0.002; 
R2 = 0.004). 



55  

 
 

Table 10. Excitement 

Variable Chi- 
square 

df p R2 

Vehicle 42.564 3 <.001*** 0.019 
Age 1.053 1 0.305 0.011 
Automation 12.642 1 <.001*** 0.005 
Interstate 9.386 1 0.002** 0.004 
Vehicle x Age 2.908 3 0.406 0.002 
Vehicle x Automation 3.407 3 0.333 0.001 
Vehicle x Interstate 1.064 3 0.786 0.000 
Age x Automation 3.210 1 0.073 0.001 
Age x Interstate 0.826 1 0.364 0.001 
Automation x Interstate 0.014 1 0.905 0.000 
Vehicle x Age x Automation 10.408 10 0.405 0.004 
Vehicle x Age x Interstate 6.759 10 0.748 0.002 
Vehicle x Automation x Interstate 5.917 10 0.822 0.002 
Age x Automation x Interstate 4.094 4 0.393 0.002 
Vehicle x Age x Automation x Interstate 16.213 25 0.908 0.005 
Note: R Squared values represent the Marginal R2 difference score from the comparison model. 
Significance Codes: `**` < .01, `***’ < .001. 

 
 
 

Discussion 

The primary focus of this research was to compare the driver’s experience under partial 
automation (i.e., Level-2) with that of no automation (i.e., Level-0). The study evaluated 
participants between the ages of 21-64 operating four vehicles supporting Level-2 
automation on relatively straight Interstate (I-15) and more curvy Interstate (I-80) 
roadways. Under Level-2 automation (compared to Level-0 automation), parietal alpha and 
DRT hit rates were lower and DRT reaction time was longer, suggesting that participants 
paid more attention to the driving environment (see Table 11). Participants also reported 
driving under partial automation to be more exciting and resulting in more nervousness. 
The magnitude of these effects was small. 
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Table 11. Summary of Significant Main Effects from the Multilevel Modeling 

 Vehicle Age 

(Young vs 

Older) 

Automation 

(Level-0 vs Level-2) 

Interstate 

(I-15 vs I-80) 

Parietal Alpha   *↓ *↓ 

Heart Rate * * ↓   

RMSSD * * ↓   

DRT-Reaction Time *  * ↑ * ↑ 

DRT-Hit Rate * * ↓ * ↓ * ↓ 

Nervousness *  * ↑  

Inattention  * ↓  * ↓ 

Excitement *  * ↑ * ↑ 

Note. (* = p < .05). ‘↑’ reflects a significant increase from one level of a variable to another, 
whereas ‘↓’ reflects a significant decrease from one level of a variable to another. Red symbols 
denote an R2 difference accounting for at least 1% of the variance. 

 
Taken together, the data establish that participants in the current study remained engaged 
with the driving task when Level-2 automation was enabled. Under Level-2 automation, 
the vehicle has combined functions like acceleration and steering, but the driver must 
remain engaged with the driving task and monitor the environment at all times (SAE, 2016). 
The pattern of data observed in the current on-road evaluation (as well as a pilot study 
reported in Appendix D) indicate that the participants in the current study met these 
requirements for Level-2 automation. If anything, the data suggest slightly enhanced 
engagement with the driving task and enhanced monitoring of the driving environment 
when participants operated the vehicle under Level-2 automation. 

The differences we observed between Level-0 and Level-2 automation were small. In fact, 
the main effect of Automation accounted for between 0.0% and 2.7% of the variance for the 
eight dependent measures reported in the results section. Even so, the experimental design, 
with 192 5-hour participant testing sessions, was sufficiently powered to detect an effect 
accounting for 0.5% of the variance 95% of the time. Even effects that accounted for less 
than 0.5% of the variance trended in the direction of more attention allocated to driving 
under Level-2 automation. 

In this context, the informal comment from one participant after testing all four vehicles 
was illuminating. This participant noted that the partial automation seemed to work well, 
but that “you had to keep an eye on the vehicle to make sure it was doing what it was 
supposed to do.” This participant’s comment is consistent with the empirical data reported 
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above and is in line with the requirements for Level-2 automation. 
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The study also found that driver engagement was modulated by the driving environment. 
Specifically, parietal alpha and DRT hit rates were lower and DRT reaction time was longer 
on I-80, a more winding section of roadway east of Salt Lake City, as compared to the 
straighter section of I-15 north of Salt Lake City. Likewise, the pilot data collected on the 
very straight, low-density traffic section of I-80 west of Salt Lake City found even lower 
levels of driver engagement (see Appendix D). That is, driver engagement as measured with 
EEG and DRT was systematically modulated by the level of difficulty of the driving 
environment. Interestingly, this pattern held for both Level-0 and Level-2 automation, 
suggesting that the cues that drivers use to allocate attention to the roadway are similar in 
both contexts. As driving becomes more demanding, it appears as though motorists allocate 
more attention to the roadway, and they do so even when Level-2 automation is enabled. 

By and large, the pattern of driver behavior we observed was similar for younger and older 
drivers. In fact, those cases where there were significant interactions with age accounted 
for a very small proportion of variance and were not indicative of a systematic trend. This 
finding is noteworthy, because it suggests that drivers of all ages, at least across the range 
covered in the current study, were able to remain engaged with the driving task and 
monitor the environment. By contrast, compared to younger drivers, older drivers find 
interacting with the complex in-vehicle infotainment systems that are found in these 
vehicles to be much more difficult and mentally demanding (Cooper et al., 2019). 

The assessment of driver engagement was informed by a combination of behavioral, 
psychophysiological, and subjective measures. Together, these measures provided an 
assessment of the driver’s engagement with the driving task, even under Level-2 
automation where the requirements for visual monitoring increase and the requirements 
for manual control decrease. The behavioral measures obtained with the DRT and the 
subjective measures are similar to those used in prior research to evaluate in-vehicle 
infotainment systems (e.g., Strayer, et al., 2019, Cooper, et al., 2019). 

One complementary measure used in this study was a spectral analysis of the parietal 
EEG. Higher parietal alpha power provides an index of lower visual engagement whereas 
lower parietal alpha power provides evidence of higher visual engagement with the driving 
environment (Bowman et al., 2017; Foxe & Snyder, 2011). As shown in Appendix A, 
parietal alpha power was highest when the participant’s eyes were closed (when the vehicle 
was parked) and was lowest under Level-2 automation. This provides direct evidence that 
participants in this study did not disengage from the driving task when operating under 
Level-2 automation. Although this brain-based EEG measure appears to be very diagnostic 
in assessing driver engagement in an experimental setting, it is currently difficult to 
incorporate in everyday driving contexts. Nevertheless, this brain-based measure has the 
potential to provide a sensitive on-line measure of driver engagement and arousal that is 
better than current methods used to make this assessment. 

Limitations and Future Directions 

This research provides a snapshot of driver arousal and workload when operating a vehicle 
under partial automation. Research participants for the study were experienced with 
manually operating a vehicle (i.e., Level-0 automation) but most were naïve to the partial 
automation in the Level-2 research vehicles that they drove (confirmed in a demographics 
survey). The relative inexperience of drivers with Level-2 automation may have affected 
several of the outcome measures that were collected. Indeed the finding that participants 
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allocated more attention to the driving task when automation was engaged is consistent 
with the performance expectations laid out by Dunn, Dingus, & Soccoloch (2019) for drivers 
in the Novelty phase of use. Accordingly, it is possible that additional familiarity with 
Level-2 automation would decrease driver excitement and nervousness and increase trust 
and acceptance. Future research should evaluate the effect of novelty and experience on 
driver arousal with Level-2 automation across an extended time period. 

The research protocol required that a researcher was present in the vehicle during all data 
collection. Researchers played a critical role in ensuring that data were accurately recorded, 
that the participant completed all specified conditions, and that safety standards were met. 
It is unclear if and how the participant’s behavior may change in the absence of a 
researcher or data monitoring equipment. For example, drivers were not allowed to use 
their phones, play music, unroll the window, or engage in any behavior that could have 
been a distraction or otherwise moderate arousal. Given the reported prevalence of these 
behaviors in the naturalistic driving environment (Dingus et al., 2016), it is possible that 
drivers would have behaved differently had they been given the opportunity. It is also 
possible that the inclusion of the DRT measurements may have increased the arousal level 
of the participants. 

Future research should evaluate driver performance using both a combination of 
naturalistic and controlled experimental methods to compare and contrast the observed 
driver behavior in both levels of automation. Care needs to be taken in the naturalistic 
portion of the study to equate the driving demands (e.g., using a random assignment of 
days when automation can be enabled). Some driving behaviors may not be observable in 
controlled environments while many aspects of driver arousal and workload may go 
undetected in a naturalistic environment. It will be important to perform this hybrid 
approach over longer intervals (e.g., 2 months) to see how trust, acceptance, and driving 
behavior change over time. If we observe the same pattern of data in the hybrid study, then 
it would suggest that drivers are able to sustain their attention to the driving task and 
monitor the driving environment. However, it is possible that the pattern of data may 
change over longer intervals and/or that the behavior observed in the naturalistic portion of 
the study does not align with what is observed in the experimental portion of the study. 

Summary 

This research compared the driver’s experience when operating a vehicle under partial 
automation and the same vehicle without automation. Under Level-2 automation, drivers 
must remain engaged with the driving task and monitor the environment at all times. We 
performed an on-road evaluation of drivers between the ages of 21-64 operating up to four 
different vehicles that supported Level-2 automation on both urban and more rural 
roadways. 

Consistent with the performance requirements established in the SAE framework for Level- 
2 automation, the data provide evidence for slightly enhanced engagement with the driving 
task and enhanced monitoring of the driving environment when participants operated the 
vehicle under partial automation. Future research should examine driver’s behavior over 
longer intervals to determine if this pattern is altered with greater experience. 
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Appendix A 
 

Parietal Alpha Logic 
 

Figure A1. Sample EEG recorded in an older participant from Fz (red line), Cz (blue line), 
and Pz (black line) in the eyes-closed condition. In the figure, successive 1000 msec 
epochs are averaged together to create the grand average. Large alpha oscillations 
are clearly visible at Pz. 

 

Figure A2. The power as a function of spectral frequency for parietal EEG (Pz) presented in 
Figure A1. Note the spike in power between 8-12 Hz, reflecting the alpha band. 
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Figure A3. Sample EEG recorded in an older participant from Fz (red line), Cz (blue line), 
and Pz (black line) in the partially automated I-15 driving condition. In the figure, 
successive 1000 msec epochs are averaged together to create the grand average. 
Compared to Figure A1, the alpha oscillations at Pz are much less prominent. 

 

Figure A4. The power as a function of spectral frequency for parietal EEG (Pz) presented in 
Figure A2. Note the reduced power between 8-12 Hz, reflecting the alpha band 
compared to Figure A2. 
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Figure A5. Parietal alpha power plotted as a function of experimental condition for younger 
adults (black line) and older adults (red line). Error bars reflect the standard error of 
the mean. Condition 1 is eyes-closed, condition 2 is driving under partial automation 
on I-15, condition 3 is driving under no automation on I-15, condition 4 is driving 
under partial automation on I-80, and condition 5 is driving under no automation on 
I-80. 
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Figure A6. Parietal power in the eyes-closed condition for younger adults (black line) and 
older adults (red line). 

 

Figure A7. Parietal power in the Level-2 partial automation driving condition on I-15 for 
younger adults (black line) and older adults (red line). 
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Figure A8. Parietal power in the manual driving condition on I-15 for younger adults (black 
line) and older adults (red line). 

 

Figure A9. Parietal power in the partially automated driving condition on I-80 for younger 
adults (black line) and older adults (red line). 
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Figure A10. Parietal power in the manual driving condition on I-80 for younger adults 
(black line) and older adults (red line). 

 

Figure A11. Parietal power plotted as a function of experimental condition for younger 
adults. Condition 1 (solid red line) is eyes-closed, condition 2 (black solid line) is 
driving under partial automation on I-15, condition 3 (blue solid line) is driving 
under no automation on I-15, condition 4 (black dashed line) is driving under partial 
automation on I-80, and condition 5 (blue dashed line) is driving under no 
automation on I-80. 
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Figure A12. Parietal power plotted as a function of experimental condition for older adults. 
Condition 1 (solid red line) is eyes-closed, condition 2 (black solid line) is driving 
under partial automation on I-15, condition 3 (blue solid line) is driving under no 
automation on I-15, condition 4 (black dashed line) is driving under partial 
automation on I-80, and condition 5 (blue dashed line) is driving under no 
automation on I-80. 
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Appendix B 

Questionnaires 
Demographics and Driving History 

This questionnaire provided basic demographic information and served as a final screening 
process to ensure participant eligibility on the day of testing. 

Brief Compound Fatigue Instrument (BCFI) 

The purpose of the BCFI was to evaluate self-reported fatigue. Participants answered: 

● On a 10-point scale, anchored by severity from absent and severe 
○ To what degree have you experienced fatigue today? 

● On a 10-point scale, anchored by severity (1 = none to 10 = severe) 
○ How severe is the fatigue which you have been experiencing? 
○ To what degree has mental fatigue caused you distress this week? 
○ To what degree do you feel fatigued currently when you walk or exercise? 
○ To what degree do you feel fatigued currently when you focus/think/read? 

● On a 4-point scale (4 = Almost asleep, 3 = Very tired, 2 = Slightly tired, 1 = 
Completely alert/awake), participants indicated their agreement regarding: 

○ How drowsy do you think you will become while driving today? 
 

Beliefs about Automated Driving Systems 

Participants indicated their beliefs on a 6-point scale, with the sixth option listed as no 
basis for judgment. Participants answered: 

● Anchored by not at all dependable and highly dependable 
○ How dependable are automated driving systems? 

● Anchored by do not work well at all and work extremely well 
○ How well do automated driving systems work? 

● Anchored by not at all safe and highly safe 
○ How safe are automated driving systems? 

● Anchored by do not trust at all and trust completely 
○ How much do you trust automated driving systems? 

● Anchored by not at all useful and highly useful 
○ How useful are automated driving systems to you? 

● Anchored by highly negative and highly positive 
○ What is your overall evaluation of automated driving systems? 

● Anchored by disagree completely and agree completely 
○ Automated driving systems are susceptible to malfunctioning. 
○ Automated driving systems handle a car well in terms of steering, 

acceleration, and braking. 
○ Automated driving systems are prone to turning off unexpectedly. 
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Participants were then provided the following definitions: 

Automation Levels: 

No automation: full-time performance by the human driver of all aspects of the dynamic 
driving task, even when enhanced by warning or intervention systems. 

Driver assistance automation: the driving mode-specific execution by a driver assistance 
system of either steering or acceleration/deceleration using information about the driving 
environment and with the expectation that the human driver performs all remaining 
aspects of the dynamic driving task Human driver and system. 

Partial automation: the driving mode-specific execution by one or more driver assistance 
systems of both steering and acceleration/deceleration using information about the driving 
environment and with the expectation that the human driver performs all remaining 
aspects of the dynamic driving task. 

Conditional automation: the driving mode-specific performance by an automated driving 
system of all aspects of the dynamic driving task with the expectation that the human 
driver will respond appropriately to a request to intervene. 

High automation: the driving mode-specific performance by an automated driving system of 
all aspects of the dynamic driving task, even if a human driver does not respond 
appropriately to a request to intervene. 

Full automation: the full-time performance by an automated driving system of all aspects of 
the dynamic driving task under all roadway and environmental conditions that can be 
managed by a human driver. 

● Participants then rated the overall level of automation using a 6-point scale stating 
the levels of automation as it related to this question: (No automation, Driver 
assistance automation, Partial automation, Conditional automation, High 
automation, or Full automation): 

○ How would you rate the overall level of automation in this car you will drive 
(or drove)? 

 
Proneness to Boredom (Vodanovich, Wallace, & Kass, 2005) 

The Proneness to Boredom questionnaire consisted of 12 statements. 

● Participants indicated their boredom on a 7-point scale anchored by highly disagree 
and highly agree. Participants answered: 

○ It is easy for me to concentrate on my activities. 
○ I find it easy to entertain myself. 
○ I get a kick out of most things I do. 
○ In any situation, I can usually find something to do or see to keep me 

interested. 
○ Many people would say that I am a creative or imaginative person. 
○ Among my friends, I am the one who keeps doing something the longest. 
○ Having to look at someone's home movies or travel slides bores me 

tremendously. 
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○ Many things I have to do are repetitive and monotonous. 
○ It would be very hard for me to find a job that is exciting enough. 
○ Unless I am doing something exciting, even dangerous, I feel half-dead and 

dull. 
○ It seems that the same old things are on television or the movies all the time; 

it's getting old. 
○ When I was young, I was often in monotonous and tiresome situations. 

 
Barratt Impulsivity Scales (Spinella, 2007) 

The Barratt Impulsivity Scale questionnaire consisted of 15 statements. 

● Participants indicated their impulsivity on a 4-point scale and anchored by 
rarely/never and almost always/always. Participants answered: 

○ I plan tasks carefully. 
○ I do things without thinking. 
○ I don't ‘pay attention’. 
○ I concentrate easily. 
○ I save regularly. 
○ I ‘squirm’ at plays or lectures. 
○ I am a careful thinker. 
○ I plan for job security. 
○ I say things without thinking. 
○ I act on impulse. 
○ I get easily bored when solving through problems. 
○ I act on the spur of the moment. 
○ I buy things on impulse. 
○ I am restless at lectures or talks. 
○ I plan for the future. 

 
Big Five Inventory-2 (Soto & John, 2017) 

The Big Five Inventory-2 questionnaire consisted of 60 statements. 

● Participants responded to questions on a 5-point scale anchored by disagree strongly 
and agree strongly. Participants answered: 

○ Is outgoing, sociable. 
○ Is compassionate, has a soft heart. 
○ Tends to be disorganized. 
○ Is relaxed, handles stress well. 
○ Has few artistic interests. 
○ Has an assertive personality. 
○ Is respectful, treats others with respect. 
○ Tends to be lazy. 
○ Stays optimistic after experiencing a setback. 
○ Is curious about many different things. 
○ Rarely feels excited or eager. 
○ Tends to find fault with others. 
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○ Is dependable, steady. 
○ Is moody, has up and down mood swings. 
○ Is inventive, finds clever ways to do things. 
○ Tends to be quiet. 
○ Feels little sympathy for others. 
○ Is systematic, likes to keep things in order. 
○ Can be tense. 
○ Is fascinated by art, music, or literature. 
○ Is dominant, acts as a leader. 
○ Starts arguments with others. 
○ Has difficulty getting started on tasks. 
○ Feels secure, comfortable with self. 
○ Avoids intellectual, philosophical discussions. 
○ Is less active than other people. 
○ Has a forgiving nature. 
○ Can be somewhat careless. 
○ Is emotionally stable, not easily upset. 
○ Has little creativity. 
○ Is sometimes shy, introverted. 
○ Is helpful and unselfish with others. 
○ Keeps things neat and tidy. 
○ Worries a lot. 
○ Values art and beauty. 
○ Finds it hard to influence people. 
○ Is sometimes rude to others. 
○ Is efficient, gets things done. 
○ Often feels sad. 
○ Is complex, a deep thinker. 
○ Is full of energy. 
○ Is suspicious of others' intentions. 
○ Is reliable, can always be counted on. 
○ Keeps their emotions under control. 
○ Has difficulty imagining things. 
○ Is talkative. 
○ Can be cold and uncaring. 
○ Leaves a mess, doesn't clean up. 
○ Rarely feels anxious or afraid. 
○ Thinks poetry and plays are boring. 
○ Prefers to have others take charge. 
○ Is polite, courteous to others. 
○ Is persistent, works until the task is finished. 
○ Tends to feel depressed, blue. 
○ Has little interest in abstract ideas. 
○ Shows a lot of enthusiasm. 
○ Assumes the best about people. 
○ Sometimes behaves irresponsibly. 
○ Is temperamental, gets emotional easily. 
○ Is original, comes up with new ideas. 
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Positive and Negative Affect Schedule (PANAS; Watson, Clark, & Tellegen, 1988) 

The PANAS consisted of 18 questions. 

● Participants responded to the first 13 items on a 5-point scale anchored by very 
slightly or not at all and extremely. Participants were asked to rate the extent to 
which they were: 

○ Distressed 
○ Excited 
○ Confident 
○ Scared 
○ Enthusiastic 
○ Irritable 
○ Alert 
○ Relaxed 
○ Cheerful 
○ Nervous 
○ Sleepy 
○ Bored 
○ Comfortable 

● Participants responded to the last 5 statements on a 5-point scale anchored by 
disagree completely and agree completely. Participants were asked to indicate their 
agreement with the following statements: 

○ I engaged in activities unrelated to driving. 
○ I focused on the road and driving safely during the entire drive. 
○ I allowed my thoughts to wander during the drive. 
○ I daydreamed during portions of the drive. 
○ I thought about everyday problems and things I need to do during the drive. 

 
Driving Experiences 

The Driving Experiences questionnaire consisted of 12 statements on a 5-point scale 
anchored by disagree completely and agree completely. 

● Participants indicated their agreement to the following statements: 
○ I was able to relax when the automated driving systems were on. 
○ I was able to engage in more activities unrelated to driving when the 

automated driving systems were on. 
○ The automated driving system made traveling boring for me. 
○ I was concerned that the automated driving systems would shut off 

unexpectedly. 
○ The automated driving systems made traveling safer. 
○ I was anxious and nervous when the automated driving systems were on. 
○ The automated driving system made traveling more enjoyable. 
○ The automated driving system reduced the stress of driving. 
○ The automated driving system took the fun out of driving. 
○ The automated driving system allowed me to think and daydream. 
○ I was uncomfortable relinquishing control of the vehicle to the automated 

driving system on curvy and hilly roads. 
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○ I was uncomfortable relinquishing control of the vehicle to the automated 
driving systems in heavier traffic. 

 
Intentions Measure 

Participants responded to 6 statements on a 5-point scale anchored by disagree completely 
and agree completely. 

● Participants were given the following prompt and then asked to indicate their 
agreement on the following statements: You may be driving vehicles equipped with 
automated driving systems such as adaptive cruise control and lane-keeping 
currently or in the near future. Please indicate your agreement or disagreement 
with the following statements about your willingness to use automated driving 
systems. 

○ I would not feel comfortable using automated driving systems on most roads. 
○ If I was tired or distracted, I would rely heavily on automated driving 

systems. 
○ I would utilize the automated driving systems in a vehicle as much as 

possible. 
○ I would not feel comfortable using the automated driving systems in a vehicle 

without monitoring it closely. 
○ I am going to make sure that the next car I buy or lease has automated 

driving systems. 
○ If I can afford it, I am going to buy or lease a car with automated driving 

systems. 
 

Evaluations of Vehicle Automated Driving Systems (EVADS) 

The EVADS questionnaire consisted of 14 items. 

● The first 13 items of the EVADS questionnaire on a 5-point scale anchored by 
disagree completely and agree completely. Participants indicated their agreement to 
the following statements: 

○ I trust the lane-keeping assistance system in the vehicle. 
○ I think the lane-keeping assistance system in the vehicle is useful. 
○ The lane-keeping assistance system in the vehicle is easy to learn and use. 
○ The lane-keeping assistance system in the vehicle does not work well on 

curvy and hilly roads. 
○ The lane-keeping assistance system in the vehicle does not work well in 

heavier traffic. 
○ I trust the adaptive cruise control system in the vehicle. 
○ I think the adaptive cruise control system in the vehicle is useful. 
○ The adaptive cruise control system in the vehicle is easy to learn and use. 
○ The adaptive cruise control system in the vehicle does not work well on curvy 

and hilly roads. 
○ The adaptive cruise control system in the vehicle does not work well in 

heavier traffic. 
○ The automated driving systems in the vehicle are safe. 
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○ The automated driving systems in the vehicle are susceptible to 
malfunctioning. 

○ The automated driving systems in the vehicle handle a car well in terms of 
steering, acceleration, and braking. 

● In the final item, participants evaluated the vehicles using a 6-point scale anchored 
by highly negative and highly positive as well as a no basis for judgment option. 
Participants were asked: 

○ What is your overall evaluation of the automated driving systems in the 
vehicle? 
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Appendix C 

Beliefs about Automation 

Beliefs about Automated Systems before Driving the Test Vehicle 
 

Participants indicated their beliefs about and expectations of automated systems prior to 
driving in the study (see Table C1). Responses of “no basis for judgment” were excluded 
from the analyses. The mean ratings of the dependability, safety, usefulness, handling, and 
workability of automated driving systems, and overall evaluations were significantly higher 
than the midpoint of 3 on a 5-point scale where higher scores indicated greater favorability. 
Thus, participants’ beliefs about automated systems were generally favorable prior to 
driving. 

At the same time, a sizable portion of the participants expressed reservations about the 
automation. 79.0% of participants agreed (somewhat or completely) that “automated 
driving systems are prone to malfunctioning” and 63.0% of participants agreed that 
“automated driving systems are prone to turning off unexpectedly.” Moreover, only 27.1% of 
participants reported that they trust automated driving systems a lot or completely, 52.5% 
indicated that they trust them somewhat and 20.3% indicated that they trust them a little 
or not at all. Similarly, only 33.9% of participants reported that automated driving systems 
are reliably dependable or highly dependable, 50.9% indicated that they are somewhat 
dependable and 15.1% indicated that they are slightly or not at all dependable. 

Finally, 47.2 % of participants reported that they thought automated driving systems are 
safe or highly safe, 39.6% indicated that they are somewhat safe and 13.2% indicated that 
they are slightly or not at all safe. 

What is clear from the pre-driving survey is that participants were split about halfway on 
their beliefs of the trustworthiness, dependability and safety of the automated systems. 
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Table C1. Mean beliefs about automated systems before driving (N = 71). 
 Mean SD 

How dependable are automated driving systems? 
1 = not at all, 5 = highly dependable 

3.25* 0.85 

How well do automated driving systems work? 
1 = do not work well at all, 5 = work extremely well 

3.53*** 0.83 

How safe are automated driving systems? 
1 = not at all safe, 5 = highly safe 

3.38** 0.77 

How much do you trust automated driving systems? 
1 = do not trust at all, 5 = trust completely 

3.08 0.79 

How useful are automated driving systems to you? 
1 = not at all useful, 5 = highly useful 

3.32* 1.18 

What is your overall evaluation of automated driving systems? 
1 = highly negative, 5 = highly positive 

3.77*** 0.89 

Automated driving systems are susceptible to malfunctioning. 
1 = Disagree completely, 5 = Agree completely 

4.02*** 0.94 

Automated driving systems handle a car well in terms of steering, 
acceleration, and braking. 
1 = Disagree completely, 5 = Agree completely 

3.90*** 0.75 

Automated driving systems are prone to turning off unexpectedly. 
1 = Disagree completely, 5 = Agree completely 

3.09 1.01 

Note: SD = standard deviation. Significantly different than midpoint. * p < 0.05, ** p < 0.01, 
*** p < .001. 

 
 

Driving Experiences with the Automated Systems 
 

Participants reported their experiences with and future intentions toward automated 
driving systems after completing their last drive in the study. Table C2 presents 
participants’ mean level of agreement with statements about their experiences with the 
automation. The means suggest that the automated systems generally made driving and 
traveling more favorable for participants. They generally agreed that the automation made 
driving safer, more enjoyable, and less stressful, and that they were able to relax when the 
automated driving systems were on. Most participants did not agree that the automation 
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made driving boring or took the fun out of driving, or that they were more anxious and 
nervous when the automated systems were on. 

At the same time, 64.8% of the drivers agreed (somewhat or completely) that they were not 
comfortable relinquishing control of the vehicle to the automated systems on curvy and 
hilly roads. Similarly, 53.5% reported that they were not comfortable relinquishing control 
of the vehicle to the automated systems in heavy traffic. Finally, 52.1% were concerned that 
the automation would shut off unexpectedly. Thus, most participants were wary about the 
automation in difficult driving conditions and many expressed concerns about the 
automated systems shutting off. 

 

Table C2. Mean experiences with automated driving systems (N = 71). 
 Mean SD 

I was able to relax when the automated driving systems were on. 3.70*** 1.01 

I was able to engage in more activities unrelated to driving when the 2.63* 1.32 
automated driving systems were on.   

The automated driving system made traveling boring for me. 2.27*** 1.18 

I was concerned that the automated driving systems would shut off 3.04 1.26 
unexpectedly.   

The automated driving system made traveling safer. 3.46*** 1.00 

I was anxious and nervous when the automated driving systems were on. 2.37*** 1.25 

The automated driving system made traveling more enjoyable. 3.59*** 1.09 

The automated driving system reduced the stress of driving. 3.31* 1.18 

The automated driving system took the fun out of driving. 2.41*** 1.33 

The automated driving system allowed me to think and daydream. 2.82 1.32 

I was uncomfortable relinquishing control of the vehicle to the automated 3.49*** 1.25 
driving system on curvy and hilly roads.   

I was uncomfortable relinquishing control of the vehicle to the automated 3.15 1.35 
driving system in heavier traffic.   

Note: Scales anchored by 1 = disagree completely and 5 = agree completely. SD = standard 
deviation. Significantly different than midpoint. * p < 0.05, *** p < .001. 
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Intentions to Use and Purchase Automated Driving Systems 
 

Table C3 presents participants’ mean level of agreement with statements about their 
intentions toward automated driving systems. Most participants conveyed a willingness to 
purchase and use automated driving systems in the future. In fact, 67.6% of participants 
agreed (somewhat or completely) that they would utilize the automated systems in a vehicle 
as much as possible while driving. Similarly, 64.8% indicated that they would not feel 
uncomfortable using automated driving systems on most roads. Only 38% of participants 
indicated that the next car they buy or lease will have automated driving systems. 
However, 64.8% reported that they would buy or lease a vehicle with automated systems if 
they could afford it. 

While most participants conveyed a willingness to use automated driving systems, the vast 
majority (80.3%) reported that they did not feel comfortable using the automation without 
monitoring the vehicle closely. 

 

Table C3. Mean intentions toward automated driving systems (N = 71). 
 Mean SD 

I would not feel comfortable using automated driving systems on most 
roads. 

2.37*** 1.23 

If I was tired or distracted, I would rely heavily on automated driving 
systems. 

2.93 1.40 

I would utilize the automated driving systems in a vehicle as much as 
possible. 

3.72*** 1.15 

 4.04*** 1.02 
I would not feel comfortable using the automated driving systems in a 
vehicle without monitoring it closely. 

  

 3.17 1.21 
I am going to make sure that the next car I buy or lease has automated 
driving systems. 

  

 3.79*** 1.22 
If I can afford it, I am going to buy or lease a car with automated driving 
systems. 

  

Note: Scales anchored by 1 = disagree completely and 5 = agree completely. SD = standard 
deviation. Significantly different than midpoint. *** p < .001. 
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Appendix D 

Pilot Evaluation 

Methods 

The procedure was identical to the main study with the following exceptions. 

Participants. Thirty-eight participants (9 female, Mage= 28.71 years of age, SDage = 5.39) 
were recruited via University of Utah IRB approved flyers and by referral from previous 
participants. 

Driving route. The driving route (see Figure D-1) was a 44-mile drive between Tooele and 
Aragonite, Utah on I-80. In a counterbalanced order, participants were instructed to drive 
with Level-0 automation or with Level-2 automation. Each drive was initiated once the 
participant was driving 75 mph on the Interstate and they felt safe and ready to begin 
testing. The first five minutes of each drive consisted of a baseline period containing only 
the driving task and was immediately followed by the addition of the DRT, which lasted 
until the end of the condition. 

For the first run, participants drove on the westbound section of I-80. At the end of the run, 
participants completed the PANAS and two DRT questions, followed by a ten-minute break. 
For the second run, participants drove on the eastbound section of on I-80. At the end of the 
run, participants completed the PANAS with two DRT questions and then the research 
administrator drove the participant back to the University of Utah. 

Experimental Design. The experimental design was a 3 (Vehicle: Cadillac CT6, Tesla 
Model S, Volvo XC90) x 2 (Automation: Level-0 vs. Level-2) factorial with 24 participants 
tested in each vehicle. 

 
 

Figure D-1. A low trafficked Interstate with an 80 mph speed limit was used for the on-road 
driving study. 
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Results 

Data from the DRT, ECG, and EEG were analyzed using linear mixed-effects models in R 
(R Core Team, 2019; version 3.6.0). Models were run using the lme4 package (Bates, 
Mächler, Bolker, & Walker, 2015; version 1.1-21). The repeated subjects factor was input 
into each model as a random intercept with other factors of interest alternately entered as 
fixed effects. Interactions between conditions were analyzed through the comparison of 
models where factors were specified as interactive to models where factors were specified as 
additive. A model comparison approach using a Likelihood Ratio Test was then used to 
assess the goodness of each model fit. These evaluations returned p-values which compared 
the full linear effects model to a partial model (see Winter, 2013). This statistical approach 
has the advantage of analyzing all available data while adjusting fixed effects, random 
effects, and likelihood ratio test estimates for missing data. 

The means and standard deviations from the 2 X 3 factorial design are reported in Table D- 
1 for each of the dependent measures. 

 
 

Table D-1. Pilot Study Results 
Automation Cadillac CT6 Tesla Model S Volvo XC90 
Reaction Time (in ms)    

Level-0 523 (189) 445 (150) 456 (153) 
Level-2 502 (178) 441 (169) 478 (204) 

Hit Rate 
   

Level-0 0.96 (0.06) 0.96 (0.05) 0.98 (0.02) 
Level-2 0.96 (0.04) 0.96 (0.04) 0.98 (0.03) 

ECG: Beats Per Minute 
   

Level-0 77.9 (13.7) 73.9 (13.6) 74.0 (12.0) 
Level-2 73.7 (13.4) 73.8 (13.3) 75.2 (11.1) 

ECG: RMSSD 
   

Level-0 38.3 (26.5) 43.2 (31.8) 39.6 (20.0) 
Level-2 36.3 (16.3) 46.1 (35.1) 38.1 (17.3) 

EEG: Parietal Alpha 
   

Level-0 3.14 (3.17) 2.91 (2.55) 3.11 (3.36) 
Level-2 2.84 (2.88) 2.84 (2.61) 2.97 (3.66) 
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As shown in Table D-2, there was only one significant effect the analyses: The main effect of 
Vehicle on DRT Hit Rate. None of the other main effects or interactions were significant. 

 
 

Table D-2. Pilot Study Results 

Reaction Time Chi-square df p R2 

Vehicle 0.139 2 0.932 0.000 
Automation 0.006 1 0.813 0.000 
Vehicle x Automation 2.685 2 0.261 0.003 
Hit Rate     

Vehicle 12.71 2 0.001*** 0.072 
Automation 0.750 1 0.386 0.004 
Vehicle x Automation 0.010 2 0.995 0.074 
ECG: Beats Per Minute     
Vehicle 2.525 2 0.282 0.004 
Automation 0.541 1 0.462 0.001 
Vehicle x Automation 0.425 2 0.809 0.005 
ECG: RMSSD     
Vehicle 0.007 2 0.997 0.000 
Automation 0.105 1 0.745 0.000 
Vehicle x Automation 1.442 2 0.486 0.004 
EEG: Parietal Alpha     
Vehicle 0.327 2 0.849 0.001 
Automation 0.007 1 0.929 0.000 
Vehicle x Automation 0.069 2 0.966 0.001 
Note. R Squared values represent the Marginal R2 difference score from the comparison model. 
Significance Code: `***` <.001. 
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