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Foreword 

Advanced driver assistance systems are becoming more commonplace in vehicles, 
leading to changes in the role and responsibilities of drivers using these technologies. 
Vehicle automation that controls vehicle speed, headway and lane position, call for 
drivers to continuously monitor the road and traffic environment—a scenario that 
carries implications for driver workload and attention.  

The AAA Foundation for Traffic Safety has invested a notable amount of resources 
during the recent years to better understand impacts of vehicle technologies and 
automation on users. The work presented in this technical document, in collaboration 
with the University of Utah, is a good example of such effort. This report summarizes a 
novel research approach to study drivers’ workload, arousal and attentiveness when 
driving vehicles equipped with Level 2 automation. Drivers were tracked for several 
weeks to observe how increased familiarity and use of the systems impacted their 
behaviors and perceptions. Results summarized in this report should help researchers, 
automobile industry and government entities better understand driver performance, 
behavior and interactions in vehicles with advanced technologies. 

 

C. Y. David Yang, Ph.D.  

President & Executive Director  
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About the Sponsor 

AAA Foundation for Traffic Safety 
607 14th Street, NW, Suite 701 
Washington, D.C. 20005 
202-638-5944 
www.aaafoundation.org 

Founded in 1947, the AAA Foundation for Traffic Safety in Washington, D.C., is a 
nonprofit, publicly supported charitable research and educational organization 
dedicated to saving lives by preventing traffic crashes and reducing injuries when 
crashes occur. Funding for this report was provided by voluntary contributions from 
AAA/CAA and their affiliated motor clubs, individual members, AAA-affiliated insurance 
companies, and other organizations or sources.  

This publication is distributed by the AAA Foundation for Traffic Safety at no charge, as a 
public service. It may not be resold or used for commercial purposes without the explicit 
permission of the foundation. It may, however, be copied in whole or in part and 
distributed for free via any medium, provided the Foundation is given appropriate credit 
as the source of the material. The AAA Foundation for Traffic Safety assumes no liability 
for the use or misuse of any information, opinions, findings, conclusions, or 
recommendations contained in this report.  

If trade or manufacturer’s names are mentioned, it is only because they are considered 
essential to the object of this report and their mention should not be construed as an 
endorsement. The AAA Foundation for Traffic Safety does not endorse products or 
manufacturers.  

 

 

http://www.aaafoundation.org/


i 

 

Table of Contents 

Table of Contents ............................................................................................................... 1 

EXECUTIVE SUMMARY ...................................................................................................... 1 

INTRODUCTION .................................................................................................................. 3 

PART 1 (Experimental Study): The Influence of Practice on Driver Workload and 
Engagement During Partially Automated Driving ......................................................... 5 

Current Experimental Study .......................................................................................................... 6 

Electrophysiology .................................................................................................................... 6 

Detection Response Task ....................................................................................................... 7 

Research Questions and Hypotheses .................................................................................. 7 

Method ................................................................................................................................................. 8 

Participants ............................................................................................................................... 8 

Materials .................................................................................................................................... 8 

Design ....................................................................................................................................... 11 

Training .................................................................................................................................... 11 

Procedure ................................................................................................................................ 12 

EEG Recording and Processing .......................................................................................... 13 

Statistical Analyses ................................................................................................................ 13 

Results ................................................................................................................................................ 14 

Behavioral Results ................................................................................................................. 14 

Neurophysiological Results ................................................................................................. 17 

Discussion ......................................................................................................................................... 22 

Behavioral metrics. ............................................................................................................... 22 

Conclusions. ............................................................................................................................ 24 

PART 2 (Naturalistic Study): Driver Behavior while using Level 2 Vehicle 
Automation, a Hybrid Naturalistic Study ...................................................................... 26 

Effects of Practice on Usage ......................................................................................................... 26 

Warnings and Driving Demand .................................................................................................. 26 



ii 

 

Arousal: Fatigue and Fidgeting ................................................................................................... 27 

Secondary Task Engagement ....................................................................................................... 28 

Naturalistic and Experimental Driving Approaches ............................................................. 28 

Current Naturalistic Study ........................................................................................................... 29 

Method ............................................................................................................................................... 30 

Participants ............................................................................................................................. 31 

Materials .................................................................................................................................. 31 

Procedure ................................................................................................................................ 32 

Results ................................................................................................................................................ 36 

Data Overview ........................................................................................................................ 36 

Level 2 Automation Usage ................................................................................................... 36 

Warnings and Driving Demand ......................................................................................... 37 

Fatigue and Fidgeting ........................................................................................................... 38 

Secondary Task Engagement .............................................................................................. 41 

Discussion ......................................................................................................................................... 46 

Use of Automation ................................................................................................................. 46 

Warnings and Driving Demand ......................................................................................... 46 

Fatigue and Fidgeting ........................................................................................................... 47 

Secondary Task Engagement .............................................................................................. 47 

Experimental versus Naturalistic Controls .................................................................... 48 

Functional Vigilance ............................................................................................................. 48 

Behavioral Adaptation ......................................................................................................... 49 

Limitations .............................................................................................................................. 50 

Future Directions ................................................................................................................... 50 

PART 3 (Survey Study): Automated Driving Experiences, Attention, and Intentions 
Following Extensive On-Road Usage of a Level 2 Automation Vehicle ....................... 52 

Research on Perceptions of Automated Driving Systems .................................................... 52 

Current Survey Study .................................................................................................................... 53 

Method ............................................................................................................................................... 54 

Procedure ................................................................................................................................ 54 



iii 

 

Survey Measures .................................................................................................................... 55 

Results ................................................................................................................................................ 57 

Bi-Weekly Survey Responses .............................................................................................. 57 

Driving Experiences with the Automated Systems ...................................................... 59 

Intentions to Use and Purchase Automated Driving Systems ................................... 62 

Relationship between Pre-Driving Beliefs about Automated Systems and Driving 
Experiences, Attention, and Intentions ........................................................................... 63 

Relation between Pre-Driving Beliefs about Automated Systems and Automated 
Driving Intentions ................................................................................................................. 65 

Relation Between Automated Driving Experiences and Attention, and Driving 
Intentions ................................................................................................................................. 66 

Discussion ......................................................................................................................................... 67 

GENERAL SUMMARY ....................................................................................................... 70 

Experimental Study ....................................................................................................................... 70 

Naturalistic Study ........................................................................................................................... 70 

Survey Study .................................................................................................................................... 71 

REFERENCES ..................................................................................................................... 72 

APPENDIX A: DATA CODING DICTIONARY FOR OBSERVED BEHAVIORS .................. 82 

APPENDIX B: SUPPLEMENTARY DATA FROM PART 2 .................................................. 86 

 

  



1 

EXECUTIVE SUMMARY 

A multi-method approach was used to better understand driver behavior when using 
Level 2 partial vehicle automation. Three methods, experimental, naturalistic, and 
survey, were implemented as part of a single longitudinal study. The complete details for 
each method and the corresponding results are fully contained in the different parts of 
this report. In short, participants were trained on a research vehicle that supported Level 
2 automation, then, in a controlled experimental trial, they drove under manual and 
automation modes on two sections of highway with varying driving demands. A 
researcher was present in the vehicle to facilitate the collection of behavioral and 
electrophysiological measures of driver cognition. After the experimental session, 
participants took the vehicle home with them to use on their regular commute to work.  

During the 6- to 8-week naturalistic portion of the study, video was recorded to 
observe driver’s behavior and system use. Periodically, participants completed a series of 
surveys to assess changes in their perceptions, attitudes, and beliefs regarding vehicle 
automation. Following the naturalistic driving phase, participants completed a second 
experimental session using the same protocol as in their first encounter. 

In Part 1 (Experimental Study), behavioral results suggest that drivers paid more 
attention to the driving environment under partial vehicle automation than when they 
were manually driving the vehicle. However, after a 6- to 8-week familiarization period, 
there was a significant decrease in attention paid to the driving task under partial 
vehicle automation in the simpler highway driving environment. The spectral 
electroencephalogram (EEG) measures did not show evidence of decreased attention or 
workload when participants were driving under partial vehicle automation. This 
highlights the importance of including multiple dependent measures and a variety of 
roadway conditions in the testing protocol, as the relationship between driver cognitive 
state and vehicle automation may depend on the specific demands of a given driving 
environment.  

Part 2 (Naturalistic Study) used a unique approach that combined naturalistic 
driving research and different control benchmarks, allowing for a more robust 
comparison of manual and automated driving. The study addressed four research areas: 
(i) automation use, (ii) system warnings and driving demand, (iii) fatigue and fidgeting, 
and (iv) secondary task engagement. The results showed that drivers used partial vehicle 
automation more than 70% of the time, and that there was an increase in system 
warnings as drivers became more experienced with the system, suggesting that drivers 
exhibited a tendency toward a more relaxed automation monitoring strategy over time. 
The study also found that drivers were less likely to use partial vehicle automation when 
driving demands were higher. Compared to manual driving, partial vehicle automation 
did not affect fidgeting or fatigue. As drivers grow more familiar with the system, they 
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were more likely to engage in secondary tasks over time; however, the lack of interaction 
with driving condition suggests that these behaviors may not be a direct consequence of 
over-reliance on the automation system. The study underscored the importance of 
leveraging different benchmarks in understanding the role and impact of vehicle 
automation on driver behaviors.  

Part 3 (Survey Study) used periodic surveys taken throughout the study to assess 
changes in driver’s beliefs and subjective experience. Participants reported that partial 
vehicle automation improved the experience of driving, reduced the stress of driving 
and made traveling more enjoyable. These positive effects of vehicle automation on the 
driving experience increased over time and were strongly correlated with intentions to 
use and purchase automated vehicles in the future. Participants reported that they 
engaged in more activities unrelated to driving under partial vehicle automation and 
become increasingly comfortable allowing their minds to wander as familiarity with the 
system increased. However, participants reported that they were cognizant of the risks 
of automated driving and were selective in their usage of the system. Surprisingly, trust 
in automated systems did not influence evaluations of the partial vehicle automation or 
the automated driving experiences. 

The current multi-method approach combining experimental, naturalistic, and 
survey data provides important and comprehensive insight into driving behavior under 
partial vehicle automation; more than what would have been obtained with any single 
methodology. The data provided a positive perspective on the driver’s behavior and 
experiences with automation. Across all three threads of the study, participants tended 
to stay engaged with the driving task when partial vehicle automation was activated. 
Participants reported that they trusted partial vehicle automation, but that they 
continued monitoring the system in case they needed to take over control. This 
continued monitoring of the system was largely reflected in their survey data, 
naturalistic data, and behavioral and neural data collected during on-road driving. 
Drivers tended to adjust their usage of automation as driving demands changed.  
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INTRODUCTION 

Automated vehicles have the potential to transform society through improvements to 
safety, mobility, sustainability, and general quality of life for billions of drivers around 
the world. The promise of automation is that it can improve safety by reducing human 
error, which remains a significant factor in motor vehicle crashes (NHTSA, 2017). 
Automated vehicles may also provide a mobility solution to people that cannot drive due 
age or disability (Alessandrini et al., 2015; Fisher et al., 2016), and they may significantly 
reduce highway and city congestion (Makridis et al., 2018; Sener & Zmud, 2019).  

However, the development of vehicle automation is a difficult problem with near 
infinite degrees of freedom (Musk, 2021). Given these challenges, many automakers have 
opted to take small and incremental steps. Indeed, it is now common for vehicles to 
include a suite of automation functions that provide safety and convenience features to 
drivers without removing the driver from the role of operator. To characterize the role 
of the driver in relation to the automation technology, the Society of Automotive 
Engineers (SAE) has distinguished six levels of automation that gradually transition from 
full manual control (Level 0) to full vehicle autonomy (Level 5; SAE, 2021). Adaptive 
Cruise Control (ACC) is characterized by the vehicle’s ability to maintain a pre-set speed 
and following distance, and dynamically adjust speed based on the flow of traffic. Lane 
Centering Assist (LCA) is characterized by the vehicle’s ability to maintain its position 
within the lane of travel. ACC, which has been available since 1995 (Mitsubishi 
Diamante), is now commonplace (Level 1). When paired with lane centering, the two 
technologies form what SAE defines as Level 2 driving automation. Technology to 
automate lateral and longitudinal vehicle control is now widely available. 

With Level 2 automation, drivers are required to supervise the automation and be 
prepared to steer, brake, or accelerate as needed to maintain safety. Thus, the driver’s 
role shifts from an active controller to that of a passive monitor of the automated system. 
In Level 2, the driver must pay enough attention to detect “edge cases,” which the 
automated technology is not equipped to handle and human input is needed. In other 
words, the driver must remain sufficiently engaged to be able to take control of the 
vehicle if the automation were to fail at any given moment. 

The consequences of these technologies on driver behavior are not yet fully 
understood. Decades of research on various aspects of vehicle automation strikes a 
cautionary note but real-world testing outcomes are not as clear. While a substantial 
body of research exists that has used driving simulation to evaluate various aspects of 
automation, only a handful of studies have been conducted on the road, and these rarely 
provide definitive answers. The promises of automation are compelling, but several 
safety concerns have been raised regarding the effects of automation on driver fatigue 
and secondary task engagement. Additional concerns relate to unintended consequences 
and changes in system use over time.  
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To address critical research gaps in our understanding of vehicle automation, the 
current study recruited participants who had no prior experience with advanced 
assistance systems. The study employed a hybrid research design that combined both 
naturalistic and experimental elements. Three methods, experimental, naturalistic, and 
survey, were implemented as part of a single longitudinal study as shown in Figure 1. 
This innovative approach allowed for a more comprehensive investigation of how 
drivers interact with and adapt to vehicle automation systems in real-world scenarios. 
By examining factors such as changes in system use over time, driver fatigue, and 
secondary task engagement, this study aimed to provide valuable insights into the safety 
concerns associated with automation use.  

 
Figure 1. Research design overview. 

In the controlled experimental session, participants were trained on a specific 
research vehicle that supported Level 2 automation, then they drove the vehicle under 
manual and partial vehicle automation modes in different highway environments. 
Behavioral and physiological measures of driver cognition and performance were 
gathered during on-road driving. After the experimental session, participants took the 
vehicle home with them to use on their regular commute to work. Driver behaviors and 
systems usage were continuously monitored through video recordings over a 6- to 
8-week period. They were also surveyed periodically during their extensive on-road 
usage of the automation regarding their perceptions, beliefs, and trust in the technology. 
Following the naturalistic driving period, participants returned to the lab and the 
protocol used in the first experimental session was repeated in a second experimental 
session. 

The parts of this report align with the major components of the study: the 
experimental study, describing the two experimental sessions (Part 1); the naturalistic 
study, describing outcomes observed during the 6 to 8 weeks of naturalistic driving 
(Part 2); and the survey study, describing the subjective outcomes measured at different 
points during the study (Part 3). More specific background information and unique 
details are provided in each of the sections below, along with a comprehensive treatment 
and discussion of the results.   
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PART 1 (Experimental Study): The Influence of Practice on Driver Workload 
and Engagement During Partially Automated Driving1 

Humans are generally bad at monitoring for rare events (Wolfe et al., 2005) and perform 
poorly on driving tasks that require sustained attention (Greenlee et al., 2018). Thus, 
there is concern that the driver’s new role as a passive monitor while using vehicle 
automation may lead to under-arousal and an increased likelihood to disengage from the 
driving environment (either by zoning out or engaging in secondary tasks), leading to 
unintended consequences associated with partially automated driving (Casner et al., 
2016; Fisher et al., 2016). 

This concern has been validated by some empirical evidence that demonstrate a 
decrease in driver situation awareness (Endsley & Kiris, 1995) and increase in driver 
drowsiness (Dufour, 2014) while utilizing automated technology. There is a related 
concern that as driver workload decreases with automation (de Winter et al., 2014), 
drivers may be more likely to engage in non-driving related tasks (NDRTs) such as 
talking on a cellphone, which are known to divert attention from the roadway (e.g., 
Strayer & Johnston, 2001). Research has found that drivers are more likely to engage in 
NDRTs when the cognitive demand of the primary driving task is low and proneness to 
boredom is high (Sanbonmatsu et al., 2013; Schroeter et al., 2015). Data from the human–
automation interaction literature shows that engagement in NDRTs increases 
incrementally from manual driving to partially automated driving to fully automated 
driving (Carsten et al., 2012), and drivers are up to 50% more likely to engage in NDRTs 
when using partial automation compared to no automation (Dunn et al., 2019). This body 
of evidence suggests that the driver’s cognitive state must continue to be monitored and 
explored at each stage of shared responsibility between the driver and the vehicle. 

However, other studies have failed to replicate these results. Naturalistic data 
obtained from vehicles instrumented with video cameras and eye trackers suggest that 
drivers continue to safely monitor the roadways even when Level 2 partial automation is 
engaged (Fridman et al., 2019; Hatfield et al., 2019), though they may do so with longer 
eye glances away from the forward roadway (Gaspar & Carney, 2019). McDonnell and 
colleagues (2021) collected electroencephalogram (EEG) data as participants drove in 
Level 0 manual mode and Level 2 partial automation mode on real world interstates—
across different roadway conditions and vehicle types—and found no differences in level 
of automation on EEG measures of driver workload or visual engagement. Lohani and 
colleagues (2021) found a similar null effect of automation on physiological arousal, as 
measured by heart rate and heart rate variability. Furthermore, Weaver and colleagues 
(2022) periodically probed drivers and failed to find a significant effect of using partially 

                                                   

1 Section contributors: Amy S. McDonnell, Kaedyn W. Crabtree, Joel M. Cooper, & David L. Strayer 
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automated technology on self-reported mind wandering, physiological arousal (heart 
rate and electrodermal activity), or driving performance. These results suggest there may 
be a notable difference between simulated driving and real driving, such that the 
potential for serious and adverse consequences on real roadways may lead drivers to 
remain engaged in such a way that is not captured in a driving simulator, where driving 
performance is less consequential. Regardless, the conflicting evidence regarding a 
driver’s ability to remain engaged while driving under partial automation suggests the 
continued need for real-time assessment of driver cognitive states and how they change 
with new roles and responsibilities. 

Current Experimental Study 

It is possible that drivers who are new to automated technology and have no prior 
experience with Level 2 partial automation (such as those in Lohani et al., 2021; 
McDonnell et al., 2021; Weaver et al., 2022) remain aroused and engaged throughout 
testing due to the novelty of the technology. There is conjecture that increasing practice 
and familiarity with an automated system may influence workload and engagement over 
time, such that both wane as practice and comfort increase. Survey data collected from 
experienced Level 2 drivers found that trust increases with Level 2 experience and that 
increased familiarity with the technology leads to decreases in stress and increases in 
feelings of security (Endsley, 2017; Gaspar & Carney, 2019). The present study aims to 
experimentally manipulate familiarity with Level 2 automation. To do so, the 
experimental design of McDonnell et al. (2021) was replicated in which participants 
drove Level 2 vehicles on real interstates. However, in the present study, a novel, 6- to 
8-week familiarization period was incorporated (described in Part 2), in which 
participants used the partially automated vehicle every day during their commute to 
work to gain practice and comfort with the vehicle. Participants then returned to the lab 
and completed a second experimental session at the end of the 6+ weeks. In the two 
experimental sessions, driver cognitive states were assessed from both a neural level and 
a behavioral level.  

Electrophysiology 

To understand cognition from a neural level, electrophysiological metrics of driver 
workload and driver engagement were collected, consistent with McDonnell et al. (2021). 
EEG has been used in past driving studies to assess driver cognitive states in real time 
(Lohani et al., 2019; Peng et al., 2022). Neurophysiological data is collected on a 
millisecond time scale from electrodes attached to the scalp, allowing for direct 
measurement of brain activity in response to the varying demands of the driving 
environment. Importantly, EEG is non-invasive and mobile, allowing it to be used in both 
simulators and real vehicles in on-road studies. EEG has become a relatively common 
method for assessing intelligent transport systems and in developing brain–computer 
interface frameworks for mental workload (Fan et al., 2022).  
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Importantly, the EEG signal can be decomposed into the frequency domain using 
a Fourier analysis (Cohen, 2014) and then categorized into different frequency bands 
(e.g., Theta ~4–8 Hz, Alpha ~8–12 Hz, Beta ~12–30 Hz) that index different cognitive 
processes. Driving studies that utilize EEG most commonly assess power in the frontally 
distributed theta frequency band from 4–8 Hz (referred to as frontal theta power) and 
power in the parietally distributed alpha frequency band from 8–12 Hz (referred to as 
parietal alpha power) to assess driver workload and visual engagement, respectively (for 
review see Borghini et al., 2014). Recent meta-analyses in the cognitive neuroscience 
literature verify that frontal theta power is sensitive to cognitive workload (Chikhi et al., 
2022), such that frontal theta power increases with an increase in cognitive effort in 
response to task demands (Fairclough et al., 2005; Gevins & Smith, 2003; Puma et al., 
2018). Parietal alpha power is inversely related to visual engagement (Goldman et al., 
2002) such that, as engagement increases, parietal alpha power decreases (Foxe & 
Snyder, 2011; McDonnell et al., 2021).  

Detection Response Task 

In addition to EEG metrics, a behavioral metric of workload was employed: the Detection 
Response Task (DRT; ISO 17488, 2016). The DRT is a simple stimulus-response task in 
which participants are instructed to respond to a quasi-randomly presented stimulus 
with a button press against the steering wheel. The DRT is a commonly used metric in the 
driving literature that consistently shows that an increase in driving-related demands is 
associated with increased reaction times and decreased hit rate to the DRT (Cooper et al., 
2016; Nilsson et al., 2018; Strayer et al., 2022; Young et al., 2013). Importantly, the DRT is 
not thought to interfere with performance on the driving task due to its simple nature 
(Castro et al., 2019; Strayer et al., 2015; Palada et al., 2019), making it an ideal candidate 
to safely assess driver workload while driving on real roadways at speed.  

Research Questions and Hypotheses 

The present study sought to answer three main questions related to driver cognitive 
states during partially automated driving:  

1. How does partial automation influence driver workload (as measured with DRT 
reaction time, DRT accuracy (hit rate), and frontal theta power)? 

2. How does partial automation influence drivers’ visual engagement (as measured 
with parietal alpha power)? 

3. How does 6 to 8 weeks of familiarization and practice with a Level 2 partially 
automated vehicle influence driver workload and engagement?  

It was hypothesized that if automation decreases the workload placed on the 
driver as it intends, lower frontal theta power would be observed, along with faster DRT 
reaction times and higher DRT hit rate while driving in Level 2 partial automation 
compared to Level 0. This would support the notion that since the vehicle removes some 
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of the driving tasks from the responsibility of the driver, the driver then has more 
cognitive resources to allocate to the DRT. It was also hypothesized that if the safety 
concerns that partial automation may lead to under-arousal and subsequent 
disengagement from the driving environment are true, then an increase in parietal alpha 
power during Level 2 partial automation would be observed compared to Level 0. Lastly, 
it was hypothesized that 6 to 8 weeks gaining familiarity with the Level 2 vehicle would 
influence driver cognitive states. More specifically, it was predicted that if vehicle 
automation leads to a decrease in driver workload and engagement, there would be a 
decrease in DRT reaction time and frontal theta power and an increase in DRT hit rate 
and parietal alpha power during the partially automated driving in the second session.  

Method 

Participants 

Participants (N = 30, 12 females, 18 males) between the ages of 18 and 55 (M = 35.7, 
SD = 9.3) were recruited via flyers, word of mouth, and online advertisements. 
Participants were compensated $20/hour on each of the two experimental testing days, 
for a total of ~10 hours across the two sessions. To be eligible for the study, participants 
had to have a valid U.S. driver’s license, no at-fault accidents within the past two years 
(as confirmed by driving records acquired through the University of Utah Division of 
Risk Management), and no prior experience with Level 2 partial automation technology. 
To ensure substantial practice driving the vehicle over the 6- to 8-week familiarization 
phase (Part 2), participants were required to have a daily work commute of at least 40 
minutes round-trip on a highway. Prior to testing, all participants were required to 
complete an online Defensive Driver Training as required by the Division of Risk 
Management. Additionally, for each session, participants were required to have a blood 
alcohol concentration of 0.0 (assessed with a BACtrack breathalyzer) and confirm that 
they had at least 6 hours of sleep the night before testing in order to be allowed in the 
vehicle. The study protocol was approved by the University of Utah Institutional Review 
Board (IRB). 

Materials 

Vehicles. Five, commercially available vehicles with Level 2 partial automation 
technology were utilized in this study: 

• 2018 Tesla Model 3 AWD/Long Range with Autopilot 
• 2017 Tesla Model S with Autopilot 
• 2018 Cadillac CT6 Premium Luxury with Super Cruise 
• 2018 Volvo XC90 Momentum with Pilot Assist 
• 2018 Nissan Rogue SL Premium with ProPILOT Assist 
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All the vehicles were equipped with ACC and LCA (or LKA, Lane Keeping Assist), 
able to be used simultaneously (qualifying them as Level 2 partial automation). Six 
participants completed testing in the Tesla Model 3, eight tested in the Tesla Model S, one 
tested in the Cadillac CT6, nine tested in the Volvo XC90, and six tested in the Nissan 
Rogue. This array of five vehicles was included in testing in order to increase 
generalizability of the results across different vehicle makes, not to draw comparisons 
between vehicles (as the study was underpowered to draw such conclusions). 

Highways. During the on-road, experimental sessions, participants drove on two 
interstate highways in the greater Salt Lake City area (see Figure 2). I-15 is a straight, 
high-traffic interstate that runs South to North, from Salt Lake City, UT, to Layton, UT, 
with five lanes of traffic in either direction and an average speed limit of 75 mph. I-80 is 
a curvy, mountain interstate running West to East, from Salt Lake City, UT, to Wanship, 
UT, with two to three lanes of traffic in either direction and an average speed limit of 60 
mph. The intention behind including two interstates was to assess how different driving 
demands may differentially influence driver workload and engagement.  

 
Figure 2. Map of the two experimental driving routes utilized in the study (I-15 in green and I-80 in 
blue), as well as the training route utilized in Session 1 (I-215 in red). 
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Detection Response Task. A vibrotactile DRT (Red Scientific Inc., Salt Lake City, UT, USA) 
was utilized as a behavioral metric of cognitive demand (ISO 17488, 2016). Participants 
were outfitted with a vibrotactile stimulus device taped to their right forearm and a 
microswitch response button attached to their right index finger (see Figure 3), 
consistent with previous driving research (Lohani et al., 2020; 2021; Strayer et al., 2022). 
For this simple stimulus–response task, a vibration stimulus was presented quasi-
randomly every 3 to 5 seconds and participants were to respond by pressing the 
response button against the steering wheel when they felt the stimulus onset. The 
vibration lasted 1 second or until the participant pressed the response button. Response 
times (RTs) to the vibrotactile stimuli were recorded at millisecond resolution and 
stimuli that were not responded to were coded as misses. Average RT and Hit Rate to the 
DRT stimulus was calculated for each participant, on both highways, in both manual and 
automation conditions, for each experimental testing session. Any RTs that occurred 
sooner than 100 ms were removed before analyses, and RTs that were over 2500 ms 
were coded as misses (ISO 17488, 2016). Hit Rate was quantified as the proportion of hits 
(e.g. responses within 100–2500 ms of stimulus onset) out of the total number of stimuli 
presented in each condition.  

Electrophysiology. EEG data were gathered using the gel-based, single-electrode BIOPAC 
system (BIOPAC Systems, Inc) and reusable electrodes (Ag/AgCl; NATUS Neurology). To 
best control the quality of the EEG recordings and prioritize quality over quantity (Luck, 
2014), three passive electrodes were placed along three midline sites–frontal (Fz), central 
(Cz), and parietal (Pz)—whose locations followed the International 10-20 system (Jasper, 
1958). A ground electrode was placed on the center of the forehead and a reference 
electrode was placed on the mastoid bone behind the right ear. Two more electrodes 
were placed above and below the right eye in line with the center of the pupil to record 
electrooculographic (EOG) activity from blinks and other eye movements for later data 
processing (see Figure 3). All impedances were kept below 10 kOhms and checked 
regularly throughout on-road testing to ensure quality data collection.  

 

Figure 3. The DRT vibrotactile stimulus and microswitch response button setup (left), EEG electrode 
setup (middle), and the combination of the two while driving (right). 
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Design  

The present study employed a 2 (Interstate) x 2 (Level of Automation) x 2 (Session) 
factorial design in which each participant completed the experimental testing on two 
interstates (I-15, I-80), in two levels of automation (Level 0 and Level 2), at two 
experimental sessions (before and after the 6- to 8-week familiarization).  

During each ~5-hour testing session, participants completed three manipulation 
checks (Resting DRT, Eyes-closed parietal alpha manipulation check, Auditory N-back 
frontal theta manipulation check) and four experimental driving conditions (I-15 
manual, I-15 partial automation, I-80 manual, I-80 partial automation). The Resting DRT 
manipulation check consisted of responding to four minutes of the DRT while sitting in 
the vehicle in the parking lot. This protocol allowed researchers to demonstrate that DRT 
behavioral metrics, frontal theta power, and parietal alpha power were all sensitive to 
driving demands such that RT and frontal theta power increase—and Hit Rate and 
parietal alpha power decrease—under dual-task, driving conditions compared to rest. 
Each participant also completed an eyes-closed, parietal alpha manipulation check in 
which they rested for 4 minutes with their eyes-closed while the vehicle was parked. An 
increase in parietal alpha power while the eyes are closed is one of the most reliable 
effects in the EEG literature (Goldman et al., 2002) and demonstrates that parietal alpha 
power is inversely related to visual engagement (because parietal alpha power increases 
when the eyes are closed). Lastly, each participant completed a frontal theta power 
manipulation check in which they completed an Auditory N-back counting task while 
EEG data were recorded and the vehicle was parked. The N-back is a task commonly 
used in the driving literature to induce cognitive load (Mehler et al., 2011; Strayer et al., 
2019; Zhang et al., 2015) and provides a measure of frontal theta power during a 
standardized cognitive task to compare with driving.  

Training  

In order to be eligible for the study, it was essential that participants had no prior 
experience with Level 2 partial automation. Participants were trained for a total of 1.5 
hours prior to the first experimental session. Prior to arriving at the lab for their first 
testing session, participants watched a 30-minute instructional video that explained the 
features of the specific vehicle they would be testing in. Then, before driving the car at 
their first testing session, they received an additional 30-minute familiarization period 
with the researcher in the parking lot in which they were able to adjust the seat and 
mirrors, identify the relevant sensors, and review how to activate and deactivate ACC 
and LCA. At this point, the researcher answered any questions and confirmed that the 
participant was ready to drive the training route.  

Participants then completed an on-road training route (see Figure 1) for another 
30 minutes. I-215, a medium-traffic interstate with a combination of straight and curving 
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sections, was used for training. It forms a three-quarters loop around Salt Lake City, UT, 
with sections that run South, West, and North. It has three to four lanes of traffic in 
either direction and an average speed limit of 70 mph. On the training route, the 
researcher instructed the participant to engage and disengage the Level 2 partial 
automation features a few times until they reported feeling comfortable starting the 
experimental session. When both the researcher and the participant felt safe and 
comfortable traveling at the speed of traffic in both Level 0 and Level 2 partial 
automation, the experimental session could begin. 

Procedure  

The procedure was identical for both testing sessions, with the exception of reduced 
vehicle training during Session 2. Upon arrival to the research lab, participants signed 
the IRB approved consent document, were screened for alcohol using a BACtrack 
breathalyzer, and confirmed the amount of sleep they got the night before. They were 
then set up with the EEG electrodes on their face, right mastoid bone, and along the 
midline of their scalp. Once set up was complete, the participant and researcher walked 
to the nearby parking lot where the vehicle was located.  

In the parked vehicle, the researcher then reviewed the technological features 
and controls/buttons in the vehicle with the participant and answered any questions. 
This familiarization period was often shorter in Session 2 because the participant was 
already very familiar with the vehicle. Following this brief vehicle familiarization phase, 
the participant completed the three manipulation checks (noted above). The DRT 
manipulation check consisted of responding to the DRT for four minutes while RTs and 
Hit Rate were recorded. The frontal theta manipulation check consisted of completing an 
auditory N-back for four minutes as EEG data were recorded. The parietal alpha 
manipulation check consisted of resting with their eyes-closed for four minutes as EEG 
data were recorded. Once the manipulation checks were complete, the participant 
started the vehicle, drove to the training route, and finished the training protocol (as 
described above).  

Once the participant was comfortable with the vehicle and the researcher felt that 
the participant was able to drive safely in both manual and partial automation mode, the 
four experimental driving conditions began. The four experimental conditions were 
defined by driving on I-15 in manual mode, I-15 in partial automation mode, I-80 in 
manual mode, and I-80 in partial automation mode. The order of the experimental 
conditions was quasi-counterbalanced such that one interstate was completed before the 
other. For example, if one participant drove north on I-15 in partial automation mode 
first, they would then drive back south on I-15 in manual mode before they headed to 
I-80, in which they would then drive east on I-80 in manual mode and then west on I-80 
in partial automation mode. The next participant would then start their experimental 
conditions on I-80 in partial automation mode, and so on. Counterbalancing in such a 
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way controlled for potential practice effects or fatigue that may occur in the 
experimental conditions. Between each experimental condition, the participant was 
instructed to pull over for the researcher to check electrode impedances to ensure 
quality EEG data acquisition.  

At the end of Session 1, the participant took the vehicle home with them and was 
instructed to drive it for 6+ weeks on their daily work commute. Part 2 describes the 
naturalistic driving component of the study. At the end of this 6- to 8-week 
familiarization phase, they were scheduled for their second experimental session, which 
employed the exact same experimental procedure as the first session. 

EEG Recording and Processing  

EEG data were recorded using wireless transmitters and amplified with the BioNomadix 
Smart Center (manufactured by BIOPAC Systems, Inc) at a 2000 Hz sampling rate. EEG 
data were observed online through AcqKnowledge (Version 5.0) and then processed 
offline in MATLAB using the EEGLAB toolbox (Delorme & Makeig, 2004). Data were 
down-sampled to 250 Hz, bandpass filtered from 0.1 Hz to 30 Hz, and then the 
continuous data were epoched into 1 second intervals with a Hanning window. Eye 
movement and blinks recorded by the EOG electrodes were corrected using Gratton’s 
regression-based eye-movement correction procedure (EMCP; Gratton et al., 1983). To 
identify any additional artifacts that were not corrected by EMCP, a subsequent moving 
window artifact rejection was used to reject epochs containing flatlines or peak-to-peak 
activity greater than 200μV (Lopez-Calderon & Luck, 2014). This two-layer approach to 
eye movement correction and subsequent rejection preserved a majority of the EEG data 
with minimal data loss. The average percent of epochs lost due to blinks and eye 
movements after correction was 0.39% across all four experimental conditions (I-15 
partial automation: 0.39%; I-15 manual: 0.42%; I-80 partial automation: 0.43%; I-80 
manual: 0.33%) and is consistent with previous on-road EEG data loss (McDonnell et al., 
2021). A Fast Fourier Transform was used to convert the artifact-free, clean EEG data 
from the time domain to the frequency domain (Cohen, 2014), and then the average 
power at each frequency from 1 Hz to 30 Hz was extracted for each participant at each 
level of automation, interstate, and session.  

Statistical Analyses  

DRT and EEG data were analyzed in R version 4.1.3 (R Core Team, 2022). Manipulation 
check results were analyzed with paired groups t-tests, comparing the manipulation 
check condition to the average of the driving conditions. These checks demonstrated that 
DRT metrics, frontal theta power, and parietal alpha power were sensitive to the various 
demands associated with driving. For the main analyses, linear mixed effects models 
were run using the lmer function in R’s lme4 package (Bates et al., 2015) to account for 
sources of non-independence in the data (i.e., repeated measures within each 
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participant) and any missing data. Participant ID was included in all models as a random 
intercept and DRT RT, DRT Hit Rate, frontal theta power, and parietal alpha power were 
all entered independently as the outcome variables. For each outcome variable, models 
were run to test the main effects of Level of Automation, Interstate, and Session, and 
then a model testing all two- and three-way interactions between these three predictors, 
with each predictor included as fixed effects in the models. Manipulation check 
conditions were not included in these models. Likelihood ratio tests were run using the 
ANOVA function in the stats package (R Core Team, 2022) to test the significance of all 
effects. The likelihood ratio test generated a chi-squared statistic that compared the 
model with the variable of interest (Level of Automation, Interstate, Session, or 
interaction between any of these three variables in the factorial design) entered as a 
fixed effect and Participant ID as a random effect, to a model with the fixed effect of 
interest removed. Effect sizes for significant effects were calculated as Cohen’s d. 

Results 

Behavioral Results  

Metrics derived from the vibrotactile DRT (RT and Hit Rate) offered insight into driver 
workload from a behavioral perspective. Each participant was presented with ~200 
stimuli in each experimental condition at each of the two testing sessions, resulting in a 
final DRT dataset of 61,471 stimulus presentations across the entire study: 

• Resting—3,062  
• I-15 manual—13,741  
• I-15 partial automation—14,334  
• I-80 manual—15,036 
• I-80 partial automation—15,298 

In total, 59,200 of the stimuli were coded as hits and 2,271 were coded as misses.  

The DRT manipulation check confirmed that DRT RT was sensitive to the 
workload associated with driving such that there were significantly slower RTs while 
driving (M = 450 ms, SD = 239, SE = 1.0) compared to while parked (M = 354 ms, SD = 195, 
SE = 3.5; t(3558.8) = 26.0, p < .001). Similarly, there was a statistically significantly lower 
Hit Rate while driving (M = 0.96, SD = 0.03, SE = 0.01) compared to while parked (M = 0.99, 
SD = 0.01, SE = 0.01; t(31.8) = -6.80, p < .001).  

Table 1 presents the descriptive statistics of DRT RT and Hit Rate as a function of 
Level of Automation, Interstate, and Session, generated from the experimental driving 
conditions. 
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Table 1. Mean (standard deviation) of DRT RT and Hit Rate as a function of Level of Automation, 
Interstate, and Session. 

Outcome  Level of Automation 

I-15 I-80 

Session 1 Session 2 Session 1 Session 2 

RT (ms) Manual 431 (220) 419 (201) 435 (231) 434 (228) 
 Partial  476 (258) 439 (219) 483 (268) 479 (266) 

Hit Rate Manual 0.97 (0.07) 0.98 (0.04) 0.96 (0.05) 0.98 (0.02) 
 Partial  0.95 (0.04) 0.97 (0.03) 0.94 (0.05) 0.94 (0.06) 

 

Figure 4 shows the mean RT by driving condition (Resting DRT manipulation 
check, I-15 manual, I-15 partial automation, I-80 manual, I-80 partial automation) and 
Session. Based on the linear mixed effects models, there was a significant main effect of 
Level of Automation (χ2(1) = 466.82, p < .001) such that RTs were significantly slower 
when driving in Level 2 partial automation mode compared to Level 0 manual mode (β 
= -39.82, p < .001, d = -0.17). There was also a significant main effect of Interstate 
(χ2(1) = 45.60, p < .001) such that RTs were faster when driving on I-15 compared to on 
I-80 (β = 12.44, p < .001, d = 0.05). Furthermore, we found a significant main effect of 
Session (χ2(1) = 60.18, p < .001) such that RTs were significantly slower at Session 1 
compared to Session 2 (β = -14.40, p < .001, d = -0.06). There was a significant interaction 
between Level of Automation and Interstate (χ2(1) = 4.92, p = .03), between Level of 
Automation and Session (χ2(1) = 28.87, p < .001), and between Interstate and Session 
(χ2(1) = 26.93, p < .001). Lastly, the three-way interaction between Level of Automation, 
Interstate, and Session was also significant (χ2(1) = 5.20, p = .02).  
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Figure 4. Average RT to the DRT in each of the four experimental driving conditions at Session 1 and 
Session 2. Error bars represent standard error of the mean. Results from the resting condition 
(manipulation check) are shown for reference.  

Figure 5 shows the mean DRT Hit Rate broken down by driving condition (I-15 
manual, I-15 partial automation, I-80 manual, I-80 partial automation) and Session. Based 
on the linear mixed effects models with Hit Rate as the outcome variable, there was a 
significant main effect of Level of Automation (χ2(1) = 14.07, p < .001) such that Hit Rate 
was higher when driving in Level 0 manual mode compared to Level 2 partial 
automation mode (β = 2.03e-02, p < .001, d = 0.42). A significant main effect of Interstate 
was also found (χ2(1) = 4.71, p < .05) such that Hit Rate was lower on I-80 than I-15 
(β = -0.01, p < .05, d = 0.25). There was no significant main effect of Session (χ2(1) = 3.30, 
p = .07) on DRT Hit Rate, nor were there any significant two-way or three-way 
interactions (all ps = .07 to .65). 
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Figure 5. Average Hit Rate to the DRT in each of the four experimental driving conditions at 
Session 1 and Session 2. Error bars represent standard error of the mean. Results from the resting 
condition (manipulation check) are shown for reference. 

Neurophysiological Results  

Neurophysiological metrics derived from the EEG (frontal theta power and parietal 
alpha power) were assessed to examine covert changes in driver cognitive state 
(workload and engagement, respectively). The raw spectral curves from 1 Hz to 16 Hz at 
electrodes Fz and Pz for each condition are presented in Figure 6. Consistent with prior 
driving literature, frontal theta power is defined as the power in the frequency band 
between 4 Hz and 8 Hz at electrode Fz. Parietal alpha power is defined as the power in 
the frequency band between 8 Hz and 12 Hz at electrode Pz. The spectral plot at Fz 
includes the four experimental driving conditions as well as the Resting DRT and the 
Auditory N-back frontal theta manipulation checks. The spectral plot at Pz includes the 
four experimental driving conditions as well as the Resting DRT and Eyes-Closed (in 
which there is a large bump in alpha power between 8 Hz and 12 Hz) parietal alpha 
manipulation checks. 
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Figure 6. Spectral curves of the power at each frequency at electrodes Fz (left) and Pz (right). 

With respect to the manipulation checks, the frontal theta power Auditory N-back 
manipulation check confirmed that frontal theta power derived from the EEG is sensitive 
to the cognitive demand associated with a driving task. Frontal theta power was 
nominally higher while driving (M = 3.05 μV2/Hz, SD = 1.35, SE = 0.09) compared to the 
resting Auditory N-back (M = 2.80 μV2/Hz, SD = 1.27, SE = 0.17), though this did not reach 
statistical significance (t(92.4) = -1.34, p = .18). Similarly, the Resting DRT manipulation 
check confirmed that frontal theta power while responding to the DRT during rest 
(M = 2.00 μV2/Hz, SD = 1.23, SE = 0.16) was significantly lower than frontal theta power 
while responding to the DRT while driving (M = 3.05 μV2/Hz, SD = 1.35, SE = 0.09; 
t(94.7) = 2.95, p < .01).  

The eyes-closed parietal alpha power manipulation check confirmed that parietal 
alpha power derived from the EEG is a neural marker of visual engagement with the 
driving environment such that parietal alpha power while the eyes are closed at rest 
(M = 7.09 μV2/Hz, SD = 10.2, SE = 1.34) is significantly higher than while driving (M = 1.74 
μV2/Hz, SD = 1.07, SE = 0.07; t(57.3) = 3.97 , p < .001). Lastly, the Resting DRT manipulation 
check indicated that parietal alpha power while responding to the DRT (M = 2.00 μV2/Hz, 
SD = 1.54, SE = 0.20) was higher (indicative of less visual engagement) than parietal alpha 
power while responding to the DRT while driving (M = 1.74 μV2/Hz, SD = 1.07, SE = 0.07), 
though this did not reach statistical significance (t(70.2) = -1.21, p = .23).  

Table 2 presents the descriptive statistics of frontal theta power and parietal alpha 
power as a function of Level of Automation, Interstate, and Session, generated from the 
experimental driving conditions. 
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Table 2. Mean and standard deviation of each of the EEG metrics as a function of Level of 
Automation, Interstate, and Session. 

Outcome 
Level of 

Automation 

I-15 I-80 

Session 
1 

Session 
2 

Session 
1 

Session 
2 

Frontal theta power (μV2/Hz) Manual 3.11 
(1.33) 

2.98 
(1.19) 

2.99 
(1.28) 

3.24 
(1.84) 

 Partial  3.07 
(1.19) 

3.19 
(1.53) 

2.87 
(1.13) 

2.96 
(1.29) 

Parietal alpha power (μV2/Hz) Manual 1.85 
(1.08) 

1.71 
(1.05) 

1.65 
(0.85) 

1.73 
(1.06) 

 Partial  1.81 
(1.17) 

1.77 
(1.35) 

1.71 
(1.02) 

1.69 
(1.04) 

 

Frontal Theta Power. Across both testing sessions, 12 frontal theta power files were lost 
due to electrodes falling off during a driving condition, issues with the activation of the 
automated technology in the vehicle, or environmental conditions (such as rain or snow) 
that rendered the vehicle sensors unusable. Therefore, the final frontal theta power EEG 
analysis consisted of 58 data files in each of the I-15 manual, I-15 partial automation, and 
I-80 manual condition and 54 data files in the I-80 partial automation condition.  

Figure 7 shows the mean frontal theta power as a function of Condition (I-15 
manual, I-15 partial automation, I-80 manual, I-80 partial automation) and Session, along 
with the manipulation check benchmarks. The linear mixed effects models with frontal 
theta power as the outcome variable revealed that there were no significant main effects 
of Level of Automation, Interstate, or Session, and no significant two- or three-way 
interactions between each of the variables of interest (see Table 3).  
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Figure 7. Average frontal theta power in the four experimental driving conditions at Session 1 and 
Session 2. Error bars represent standard error of the mean. Results from the resting DRT and 
auditory N-back conditions (manipulation checks) are shown for reference. 

 

Table 3. Main effect and interactive results from linear mixed effect models predicting frontal theta 
power. 

Predictor χ2 df p 

Level of Automation 0.0001 1 .99 
Interstate 0.07 1 .79 
Session 0.35 1 .55 
Level of Automation x Interstate 1.11 1 .29 
Level of Automation x Session 0.07 1 .80 
Interstate x Session 1.05 1 .31 
Level of Automation x Interstate x Session 1.92 1 .17 

 

Parietal Alpha Power. Across both testing sessions, 14 parietal alpha power files were 
lost due to electrodes falling off during a driving condition, issues with the activation of 
the automated technology in the vehicle, or environmental conditions (such as rain or 
snow) that rendered the vehicle sensors unusable. Therefore, the final parietal alpha 
power EEG analysis consisted of 57 data files in the I-15 manual and I-15 partial 
automation conditions, 58 data files in the I-80 manual condition, and 54 data files in the 
I-80 partial automation condition.  
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Figure 8 shows the mean parietal alpha power broken down by Condition (I-15 
manual, I-15 partial automation, I-80 manual, I-80 partial automation) and Session, along 
with the DRT and eyes-closed manipulation benchmarks. Results of the linear mixed 
effects models with parietal alpha power as the outcome variable are presented in Table 
4. Mixed models revealed that there were no significant main effects of Level of 
Automation or Session. There was however a significant main effect of Interstate on 
parietal alpha power (χ2(1) = 3.87, p < .05) such that there was lower parietal alpha power 
when driving on I-80 compared to I-15 (β = -0.10, p < .05, d = -0.10), collapsed across Level 
of Automation and Session. There were no significant two- or three-way interactions 
between each of the variables in the factorial design. 

 

Figure 8. Average parietal alpha power in the four experimental driving conditions at Session 1 and 
Session 2. Error bars represent standard error of the mean. Results from the resting DRT and 
auditory N-back conditions (manipulation checks) are shown for reference.  
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Table 4. Main effect and interaction results from linear mixed effect models predicting parietal alpha 
power.  

Predictor χ2 df p 

Level of Automation 0.24 1 .63 
Interstate 3.87 1 .05 
Session 0.30 1 .58 
Level of Automation x Interstate 0.002 1 .97 
Level of Automation x Session 0.045 1 .83 
Interstate x Session 2.02 1 .16 
Level of Automation x Interstate x Session 0.76 1 .38 

Discussion 

When driving a Level 2 partially automated vehicle, drivers are expected to remain 
vigilant and engaged with the driving task should the automated technology require 
human intervention (SAE, 2021). There is concern that because automation may decrease 
the workload of the driver, they therefore may disengage with the driving environment. 
Furthermore, drivers tend to perform poorly at monitoring tasks that require detection 
of rare events (Greenlee et al., 2018; Wolfe et al., 2005). The present study explores the 
effect of partial vehicle automation on driver workload and engagement and how these 
change after drivers gain practice and familiarity with automated systems. A multi-
method, experimental approach was undertaken to measure driver cognitive states 
during real driving conditions from both a behavioral (DRT) and a neural (EEG) 
perspective. Each variable of interest was systematically manipulated in a 2 (Level of 
Automation: Level 0 and Level 2) x 2 (Interstate: I-15 and I-80) x 2 (Session: Session 1 and 
Session 2) factorial design. Manipulation checks for each of the outcome measures were 
also included to ensure that the measures were sensitive to the demands associated with 
driving. Overall, statistically significant effects were found for behavioral measures (DRT 
RT and Hit Rate) but not for neurophysiological metrics (frontal theta or parietal alpha 
power). 

Behavioral Metrics  

The DRT manipulation check (in which participants responded to four minutes of the 
DRT when the vehicle was parked) validated that RT and Hit Rate are sensitive to the 
cognitive demands associated with driving, providing confidence that these measures 
assess driver workload by using the behavioral metrics derived from the vibrotactile 
DRT.  

RTs to the DRT demonstrated sufficient discriminability to detect differences in 
driver workload associated with varying levels of automation, interstate characteristics, 
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and changes over time. The results revealed a main effect of automation such that 
participants had slower RTs when driving in partial automation mode compared to 
manual mode. This suggests that rather than decreasing driver workload as automation 
intends, driving under partial automation was associated with an increase in driver 
workload. Additionally, there was a significant main effect of Interstate such that driving 
on I-80 induced more cognitive load than driving on I-15, indicating that participants 
driving on the curvy section of I-80 paid more attention to the driving task regardless of 
the mode of automation. Lastly, there was a main effect of Session on RTs such that 
participants responded faster to the DRT at Session 2 compared to Session 1, suggesting 
evidence of a practice effect.  

More pertinently, all two-way and three-way interactions were significant. Of 
particular interest was the interaction between Level of Automation and Session, which 
revealed that six weeks of practice and familiarity with vehicle automation influenced 
driver workload over time. The RT data tended to show a steeper decline (faster RTs) 
from Session 1 to Session 2 when driving in partial automation mode compared to 
manual mode. Interestingly, this was only the case when driving on I-15 and not I-80. 
These data suggest that practice with vehicle automation decreases driver workload over 
time, at least when driving on roads with relatively low demand. This further highlights 
the importance of including various highway characteristics in study designs.  

DRT Hit Rate data support some of the conclusions drawn from the RT data. In 
particular, Hit Rate data show a significant main effect of Level of Automation such that 
Hit Rate was higher during manual driving compared to partially automated driving, 
consistent with the interpretations drawn from the RT data. Additionally, Hit Rate was 
higher on I-15 compared to I-80, further validating the interpretation that I-80 was more 
cognitively demanding. However, Hit Rate was less sensitive to variations in cognitive 
load than RT, possibly due to ceiling effects in Hit Rate.  

Neurophysiological Metrics  

The frontal theta and parietal alpha manipulation checks validated that these EEG 
metrics are sensitive to the demands (both cognitive and visual) associated with driving. 
In terms of frontal theta power, it was found that frontal theta power while responding 
to the DRT in the parking lot was significantly lower than frontal theta power while 
driving. Participants also completed a standardized Auditory N-back workload task while 
parked to assess frontal theta power in a cognitive task compared to while driving. 
Interestingly, frontal theta power was numerically higher in the conditions that involved 
driving compared to the N-back task alone, suggesting that driving is cognitively 
demanding. Additionally, parietal alpha power when the eyes are closed at rest was 
significantly larger than while driving, confirming well-validated EEG findings that 
parietal alpha power is inversely related to visual engagement (Goldman et al., 2002). It 
was also found that parietal alpha power was numerically lower (indicative of more 
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visual engagement) when participants were driving and responding to the DRT than 
when they were responding to the DRT at rest.  

The manipulation checks validate that these EEG metrics are sensitive to the 
demands of driving compared to rest; however, they were less sensitive to 
discriminating differences in workload and engagement between driving conditions. 
Unlike the behavioral results, our neurophysiological results do not show significant 
effects of Level of Automation or Session. There was a main effect of Interstate on 
parietal alpha power such that participants were more visually engaged on I-80 
compared to I-15, likely due to the increased demand associated with the curvy section of 
I-80. In general, the null frontal theta and parietal alpha effects across a majority of the 
experimental conditions replicate the results of McDonnell et al. (2021), which had a 
similar experimental protocol, with the exception of a second testing session.  

Conclusions  

The DRT was more sensitive to experimental condition differences than the EEG 
measures, which is consistent with prior findings (e.g., Strayer et al., 2015). The data 
suggest that Level 2 partial automation may not decrease driver workload as expected, 
given our main effects of Level of Automation on RT and Hit Rate. In fact, the DRT data 
suggest that drivers in this experimental study may pay more attention to the driving 
environment under partial automation compared to manual mode. This conclusion is 
consistent with past work that utilized the DRT to test driver attention under partial 
vehicle automation (Strayer et al, 2020). However, after a 6-week familiarization period 
in which participants practiced driving in partial automation mode daily, there was a 
significant decrease in attention paid to the driving task under partial automation—at 
least in the simpler driving environment (I-15).  

The observed difference across Interstate suggests that driver engagement is 
modulated by driving environment, consistent with prior work (Strayer et al., 2020). In 
particular, there was an increase in DRT RT, decrease in Hit Rate, and decrease in 
parietal alpha power when participants drove on I-80, a more winding, mountain-
climbing section of the interstate, as compared to the straighter driving environment on 
I-15. Interestingly, this pattern held for both Level 0 manual driving as well as Level 2 
partially automated driving and was observed even after participants had 6+ weeks of 
practice. This result has implications for future driving research in that it establishes the 
importance of including a variety of roadway conditions in the testing protocol, as the 
relationship between driver cognitive state and automation may be dependent on the 
specific demands of a given driving environment. Future research may also consider 
extending the length of familiarization and practice provided to a participant. This study 
allowed participants 6 to 8 weeks of practice with the Level 2 vehicle and found 
significant effects of Session on DRT RT. It is possible that with more time and practice, 
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there would be an even greater decrease in workload and engagement associated with 
partial automation. 

One limitation of the current experimental protocol is that an experimenter was 
present in the vehicle during testing in order to monitor data acquisition, the quality of 
the neurophysiological recordings, and electrode impedances. It is possible that the 
driver’s behavior would change in a more naturalistic setting when the experimenter 
was not present. This hypothesis is directly examined in Part 2. Overall, the current study 
highlights the feasibility of collecting on-road behavioral and neurophysiological data 
across different driving environments and vehicle makes. As with all cognitive research, 
there is a desire for use-inspired basic research that utilizes traditional, well-validated 
psychological and cognitive neuroscience methods and constructs to test research 
questions with applied outcomes. The current experimental study taps into a timely and 
relevant topic in human factors research: as society is becoming more and more 
automated there is a need to continue to explore how humans engage and interact with 
automated technology when responsibilities are shared.   
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PART 2 (Naturalistic Study): Driver Behavior while using Level 2 Vehicle 
Automation, a Hybrid Naturalistic Study2  

The naturalistic phase of this study aimed to address a number of research questions 
along several dimensions. Background and motivation for these dimensions are 
provided in the sub-sections below, followed by an overview of the main objectives and 
questions addressed in Part 2.  

Effects of Practice on Usage 

Research suggests that drivers' familiarity and experience with automation technologies, 
such as LCA or ACC, may influence usage patterns (Beggiato et al., 2015; Larsson, 2012). 
Initially, drivers may be hesitant to use automation due to lack of understanding or 
concerns about reliability. As they gain experience, they may become more comfortable 
and proficient. However, it is unclear how increased proficiency affects usage. Dunn et 
al. (2021) propose that experience with automation changes behavior through 
operational phases, but this has not been experimentally confirmed and likely depends 
on the driver's perception of control, usefulness, and reliability (Parasuraman & Riley, 
1997). The current study aimed to better understand the relationship between practice 
and the use of vehicle automation. 

Warnings and Driving Demand 

Automation warnings occur for various reasons. In vehicles equipped with Level 2 
automation, warnings related to driver state monitoring are common. Warnings arise 
when drivers fail to maintain sufficient steering torque or keep their eyes on the forward 
roadway. These warnings typically involve visual, auditory, and tactile cues such as 
vibrations through the steering wheel and seat. The specific types of warnings, their 
activation methods, and their intended message to drivers vary depending on the 
vehicle's automation system and capabilities.  

However, research suggests that driver acceptance of system warnings is often 
low (Xu et al., 2021) and influenced by factors such as the driver's experience and 
familiarity with the technology, as well as the perceived reliability and usefulness of the 
automation (Abe & Richardson, 2004; Large et al., 2017). Changes in the frequency of 
system warnings may result from changes in a driver’s understanding of the warning 
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cause, intent, and severity as well as their acceptance and use of the system. The current 
study allowed for the tracking of the frequency of system warnings across vehicles and 
over time. 

Warnings are also occasionally issued to request that the driver take over steering 
control due to poor conditions. Although automated systems can sometimes function in 
challenging conditions, they are not currently intended for situations requiring extra 
driver caution and vigilance. The road-facing camera used in the current research 
allowed researchers to code the co-occurrence of warnings and various types of poor 
conditions. The frequency of system alarms and the continued use of vehicle automation 
in poor driving conditions reflect the automation control strategies and the extent to 
which drivers remain functionally vigilant to the driving task (Fridman et al., 2019). 

Arousal: Fatigue and Fidgeting 

The relationship between Level 2 automation and fatigue is complex and not fully 
understood. Several research studies using driving simulations have found that 
automation use led to an increase in driver passive fatigue, caused by under arousal and 
boredom (Ahlström, et al., 2021; Arefnezhad et al., 2022; Desmond & Hancock, 2000; 
Matthews et al., 2019). However, the controlled nature of these research designs often 
limits the types of natural countermeasures that drivers may employ to combat fatigue 
and under arousal. Indeed, research has shown that secondary task interactions may, in 
some cases, protect against fatigue that arises during the use of automation (Schömig et 
al., 2015; Feldhütter, et al., 2019), leading some to suggest secondary task use as a 
countermeasure for automation related fatigue (Vogelpohl, et al., 2019). However, 
complex secondary tasks can also distract from the driving task and result in slow 
resumption of vehicle control during a takeover request (Louw et al., 2015; Merat et al., 
2014). Because research on driver fatigue during automation use has primarily been 
conducted in simulators and some on-road studies, outcomes have been inconclusive 
regarding the role and prevalence of drowsiness (Dunn et al., 2019). Thus, it remains 
uncertain if these findings can be extrapolated or generalized to real-world scenarios. 

Fidgeting is defined by the Oxford Dictionary as making small movements, 
especially of the hands and feet, through nervousness or impatience. Research suggests 
that fidgeting is highly associated with mind wandering and inattention (Carriere et al., 
2013) and is sometimes viewed as a distracting secondary task (Hasan et al., 2022). 
Fidgeting behaviors may therefore be indicative of a driver countermeasure to combat 
fatigue or boredom and a potential precursor to passive fatigue. Based on these 
definitions and findings, fidgeting behavior may serve as a useful indirect measure of 
driving task engagement, with lower rates of fidgeting suggesting higher driving 
engagement or potential fatigue, and higher rates of fidgeting suggesting lower driving 
engagement and possible mind wandering. 
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Secondary Task Engagement 

Roadside observations of drivers suggest that they engage in non-driving related 
secondary tasks up to 32% of the time (Huisingh et al., 2015). With recent technological 
developments allowing for vehicle-phone pairing, voice control, and heads-up 
technology interactions, it is likely that this number is growing. Behavioral analyses 
using the SHRP2 naturalistic driving dataset suggest that observable distractions are 
prevalent in 52% of normal baseline driving (Dingus et al., 2016). While the prevalence of 
handheld phone use for talking by drivers has gradually decreased, the prevalence of 
handheld device manipulation for activities such as texting and internet use has 
increased (NHTSA, 2021).  

Several studies have indicated that drivers are more likely to engage in secondary 
tasks when vehicle automation is active (Dunn et al., 2021; De Winter et al., 2014; 
Naujoks et al., 2016; Endsley, 2017; Reagan et al., 2021). Drivers are also able to more 
efficiently complete secondary tasks with automation than when manually driving (He & 
Donmez, 2019). The primary concern with secondary task engagements during 
automation use is that they reduce the driver’s ability to safely monitor the automation 
through a diversion of visual and cognitive resources (Gaspar & Carney, 2019) and 
decrease a driver’s ability to quickly resume full control of the vehicle (see Morales-
Alvares et al., 2020, for a comprehensive review). A second concern is that the driver 
may develop automation-induced complacency over time, where drivers will over-rely 
on the automation and fail to monitor it appropriately. Contrasting results in two 
naturalistic driving studies analyzed by Dunn et al. (2021) suggest that driver 
complacency and willingness to engage in secondary tasks may develop through a series 
of phases. In the first phase, the learning phase, drivers begin to get acquainted with the 
automation, including learning about its potential uses and limitations. During this 
phase, drivers may not fully trust the automation and may be unwilling to engage in 
non-driving-related tasks. However, as experience with the automation grows, it has 
been suggested that drivers transition into an integration phase (Saad, 2004), indicated 
by an increased willingness to divert attention from the roadway toward secondary 
tasks. The existence of this type of phased learning has not, however, been demonstrated 
in a single study, and it is unclear whether this theory accurately characterizes the 
evolution of secondary task behaviors with automation use in the real world. 

Naturalistic and Experimental Driving Approaches 

The naturalistic driving approach, originally developed by the Virginia Tech 
Transportation Institute (Neale et al., 2005) and now used by researchers worldwide 
(Eenink, et al., 2014; Fridman et al., 2019), uses cameras placed in participant vehicles to 
passively collect video recordings of drivers during their normal use of the vehicle. This 
approach allows researchers to observe driving behavior as it occurs in real-world 
scenarios, while allowing drivers to act naturally. 



29 

Naturalistic driving research generates a continuous stream of video which can 
be challenging to transfer, catalog, and analyze. To help manage this complexity, several 
approaches have been developed to both identify events of interest and suitable sections 
of video to code for baseline behavior. In most cases, critical events are identified either 
through high-g (force) events or through some form of machine learning (e.g., Fridman et 
al., 2017). Baseline driving epochs are then selected to match as closely as possible to the 
event of interest with the exception that the event of interest is not found in the selected 
baseline video. The validity of these techniques hinges on the degree to which the 
baseline epochs match the event epochs, and great care is required to ensure that they 
match as closely as possible. However, because there are no true experimental controls 
in naturalistic driving research, it can be challenging to form causal relationships 
between events (Carsten et al., 2013). This is especially true with vehicle automation or 
secondary task interactions where an environmental factor, which is not easily matched 
in the baseline, may have a large influence on behavior. 

Experimentally controlled evaluations of driver performance are commonly used 
to gain insights into the potential safety concerns that may arise with vehicle 
automation. Within the driving domain, these come in several variations that range from 
simple tracking tasks (Strayer & Johnston, 2001) to complex scenario mock-ups using 
multiple highly instrumented vehicles on climate-controlled test tracks (Gibson, 2015; 
Tan et al., 1998). The primary strength of tight experimental control is that it allows 
researchers to manipulate a single factor while holding all other factors constant. Unlike 
with the naturalistic driving approach, the performance baseline is often an identical or 
near identical scenario. This allows for confident statements about causality. The 
challenge with these types of studies is generalizability, as naturalism is often sacrificed 
for control. 

Thus, another aim of this study was to deploy a hybrid naturalistic approach in 
order to contrast behaviors observed during Level 2 automation using different 
benchmarks: a naturalistic baseline (taken from video where drivers elected not to use 
automation) with an imposed experimental baseline (generated using a control condition 
in which the driver was instructed not to use vehicle automation).  

Current Naturalistic Study 

With the dimensions noted above as a backdrop, the current study expands on previous 
research in several key ways. First, all vehicles in the study have automated systems that 
meet the SAE definition of Level 2 automation. Prior research has often used a mixture of 
Level 1 and Level 2 vehicles (e.g., Dunn et al., 2021). Second, the study was designed to 
systematically control environmental differences that could influence automation use, 
such as varying road conditions, weather, traffic density, and infrastructure. This is a 
unique and important manipulation that, to the knowledge of the research team, has 
never been done before. Finally, novice users were followed over a 6- to 8-week period, 
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longer than previous studies, which allowed for in-depth analysis of how driver 
behaviors change as drivers become more familiar with vehicle automation. Through 
this novel experimental design, the following questions are explored: 

• Automation Usage (AU): 
o AU1 – Does experience (based on number of weeks of system use) with 

automation change the frequency with which drivers activate the 
automation? 

o AU2 – How does the time to re-engage the system (after a system 
disengagement) change with experience? 

• Warning and Driving Demand (WD): 
o WD1 – Does the frequency of system warnings change over time? 
o WD2 – Does the frequency of automation use change during poor 

driving conditions? 
• Fatigue and Fidgeting (FF): 

o FF1 – Do drivers show increased signs of fatigue when using 
automation and does this change over time? 

o FF2 – Do drivers show increased signs of fidgeting when using 
automation and does this change over time? 

• Secondary Task Engagement (ST): 
o ST1 – How does the frequency of secondary task use (non-driving 

related) change during Level 2 use and over time? 
o ST2 – How does the frequency of task type, mode of interaction (voice 

vs manual), and interface (cell phone vs. In Vehicle Information System 
[IVIS]) change during Level 2 use and manual driving? 

Method 

As noted in previous sections, the video data analyzed and presented in this section form 
a subset of a larger research effort (see Figure 9), which included a 6- to 8-week 
naturalistic observation period, survey data collection (Part 3) and two 5-hour on-road 
performance evaluations (Part 1). Herein, methodological details that vary or are specific 
to the 6 to 8 weeks of naturalistic driving are described. 
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Figure 9. Research design overview. 

Participants 

Participants (N= 30, 12 females, 18 males) between the age of 18 and 55 (M = 35.7, 
SD = 9.3) were recruited through flyers, word of mouth, and online advertisements. For 
the 6- to 8-week naturalistic portion of the experiment, participants received an average 
compensation of $300. Eligibility criteria included having a valid U.S. driver’s license, no 
at-fault accidents within the past two years (verified by driving records obtained through 
the University of Utah Division of Risk Management), and no prior experience with 
Level 2 automation. Participants needed to have a daily work commute of at least 20 
minutes (40 minutes round trip) on a major local interstate (I-80, I-15, or I-215) and were 
instructed to use vehicle automation as often as they felt comfortable. 

Materials 

Vehicles. The naturalistic study used the same vehicles as the experimental study (Part 
1): Tesla Model 3, Tesla Model S, Cadillac CT6, Volvo XC90, and Nissan Rogue. The 
distribution of participants testing in each vehicle was as follows: six participants in the 
Tesla Model 3, eight in the Tesla Model S, one in the Cadillac CT6, nine in the Volvo XC90, 
and six in the Nissan Rogue. 

Cameras. Rosco-developed Dual-Vision XC4 cameras were installed under each vehicle’s 
rear-view mirror. The cameras offered a view of both the forward roadway and the 
vehicle interior using a fish-eye lens. Additionally, an auxiliary camera captured either 
the screen (instrument panel) behind the steering wheel or the screen between the front 
seats, depending on the location of vehicle state icons indicating automation status. 
Video data were stored on Rosco and Transcend brand secure digital (SD) cards, and the 
cameras automatically started and stopped recording when the vehicle was turned on or 
off. 

Video Coding. Videos were processed for analysis using BORIS (Behavioral Observation 
Research Interactive Software; Friard & Gamba, 2016). BORIS enabled coders to pre-
specify activities of interest and then perform a frame-by-frame video playback to mark 
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the beginning and end of each behavior. Summary results for each coded video were 
provided in a simple .csv format, with each output line containing details about 
individual observations, such as the behavior, location within the video, and start and 
stop times (Figure 10).  

Figure 10. Example BORIS video coding output file. 

Procedure 

After completing Experimental Session 1 (described in Part 1), participants received one 
of the five research vehicles, which they agreed to use on weekdays for commuting to 
and from work, not allowing other people inside the vehicle, and operating the vehicle 
according to the law. Participants were encouraged to use vehicle automation on 
interstate segments of their commute as often as they felt comfortable. They used the 
vehicle on workdays for 6 to 8 weeks (subject to scheduling constraints related to the 
final evaluation) before completing the final experimental session and returning the 
vehicle (see Part 1). 

Experimental Control. Each week, one randomly selected day was designated as an 
experimental control day, during which participants were instructed not to use vehicle 
automation (Automation: NO). Notifications were sent to drivers the day prior. Control 
days were chosen at random and reassigned if they coincided with adverse weather 
unrepresentative of other drives that week. Videos from these days were coded and 
included in the analyses under the Experimental Control condition (see Figure 11). 

 

Figure 11. Automation and Control conditions. In the Automation: YES condition participants 
selected when to use automation (Automation-L2) and when to drive manually (Naturalistic 
Control). In the Automation: NO condition participants were instructed not to use automation. 

Naturalistic Day. Due to the large volume of video collected during daily commutes, just 
one day each week was selected from the remaining days for coding (Automation: YES). 
This day was chosen at random, with the constraint that its weather closely matched that 

Observatio  Observation date Media file Total length FPS Behavior Behavioral Modifiers Behavior type Start (s) Stop (s) Duration (s)
002_back_ 6/14/2021 11:32 C:/Users/RS 1739.2 10 Radio Tasks Listening STATE 53.969 1407.718 1353.749
002_back_ 6/14/2021 11:32 C:/Users/RS 1739.2 10 L2 ON L2 STATE 70.404 190.701 120.297
002_back_ 6/14/2021 11:32 C:/Users/RS 1739.2 10 Other Other STATE 78.455 83.956 5.501
002_back_ 6/14/2021 11:32 C:/Users/RS 1739.2 10 Other Other STATE 86.456 190.705 104.249
002_back_ 6/14/2021 11:32 C:/Users/RS 1739.2 10 L2 OFF L2 STATE 190.702 1407.718 1217.016
002_back_ 6/14/2021 11:32 C:/Users/RS 1739.2 10 Poor CondOther Construction STATE 195.956 256.804 60.848
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of the Experimental Control Day (e.g., if it was sunny in the control day then the 
Naturalistic Day was also sunny). Instances of automation use during this day were 
coded and analyzed under the Automation-L2 condition, while instances of manual 
driving were coded and analyzed under the Naturalistic Control condition (Figure 11). 

Video Handling. After 6 to 8 weeks of naturalistic driving, participants completed the 
final experimental session and returned their vehicles. SD video cards were then 
removed from the vehicle cameras and processed for analysis. Prior to uploading and 
saving the videos, files were cleaned to eliminate all non-commute driving on the 
regional interstates. Thus, the length or duration of driving each day was roughly 
equivalent. Furthermore, video files were combined into AM and PM commutes for each 
day. Cleaned video files capturing highway driving during AM and PM commutes were 
uploaded to a secure server for analysis. 

Video Blinding. To minimize potential bias among coders, several procedures were 
implemented to blind them to the experimental condition present in the videos. This 
primarily involved a two-pass approach to video coding, wherein all behaviors except 
the state of automation were coded during the first pass. Automation indicators were 
obscured during video playback using strips of painter’s tape positioned on the monitor. 
During the second pass, the tape was removed, and the automation state was recorded. 
All other indicators of the experimental condition were eliminated, including file labels 
and other electronic data, until the final completion of each participant record, after 
which condition information was reintegrated into the record. 

Video Coder Training. Video reduction took place over approximately 1.5 years, 
involving several different coders. To ensure coding consistency, new coders underwent 
a three-week peer-to-peer training focused on coding quality and consistency, 
established through redundant coding and regular checks of inter-rater reliability. 

Additional steps were taken to further ensure coding consistency. First, with each 
new participant, reductionists group-coded video from at least one drive, allowing them 
to determine if any unique or challenging behavior was likely to arise from the 
participant and to reach a consensus on how to handle such behavior if observed. 
Second, at least one video was group-coded each week, regardless of whether it was from 
a new participant. This strategy led to a target of 40% of all videos being redundantly 
coded. Finally, inter-rater reliability was continuously assessed using an Excel-generated 
script and BORIS’s kappa score generator. An acceptable kappa score on the 
unaggregated raw coding was set to 0.6, which when collapsed by coded task led to 
scores above 0.9. If significant differences were found between observations, coders 
would review the video as a group to identify and correct discrepancies. 

Videos were generally coded in real-time, but coders often had to re-watch 
complex sections to accurately code the start and stop of overlapping behaviors. This 
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demanding process required significant focused attention, so coders were encouraged to 
take breaks as needed to maintain high performance levels. 

Video Coding Rubric. A comprehensive and systematic coding scheme was adapted 
from the task-modality distraction testing paradigm developed by Strayer et al. (2017). 
This rubric allowed for systematic differentiation of various participant behaviors, and it 
was used to create a video coding dictionary to guide video reduction. This dictionary 
included clear definitions of all behaviors of interest and examples of each behavior. To 
address the four sets of questions posed by this research, the following coding scheme 
was developed:  

• Level 2 Automation Usage – Instances of automation engagement and 
disengagement were coded using an instrument-facing camera positioned in 
each vehicle to capture an image of the screen displaying automation state 
(i.e., when system was on/engaged or off/disengaged). The use of automation 
activation controls served as a redundant marker of automation use and 
helped to disambiguate system state when icon visibility was poor. 

• Warnings – System warnings were marked as discrete events in the data file. 
• Driving Demand – Driving demand was operationalized as the sum of 

concurrent poor conditions present, with low demand including no poor 
conditions, moderate demand including one poor condition, and high demand 
including two or more poor conditions. Poor conditions related to weather, 
traffic, construction, emergency vehicles, or other events that could adversely 
affect driving and automation system function.  

• Fatigue and Fidgeting – Fatigue and fidgeting behavior were coded 
continuous events, meaning that the coders marked the start and stop times of 
each specific behavior. For fatigue, this included marking the beginning and 
end of visible signs of sleepiness, such as yawning, heavy eyelids, and head 
nodding. For fidgeting, this including identifying the beginning and end of 
body movements lasting more than 3 seconds, such as touching the face, neck, 
head/hair, or moving hands to and from the steering wheel. Additionally, 
reaching and grabbing, and eating and drinking behaviors were grouped into 
fidgeting. 

• Distraction and Inattention – This was a comprehensive class of behaviors, 
and detailed data were collected on each instance. Five core distracting 
activities were defined: text messaging, calling and dialing, radio listening, 
navigation, and video interaction. Each of these activities was coded for 
modality of interaction, which included visual-manual or auditory-vocal, and 
interface, which included cell phone or in-vehicle-information-system (IVIS). 
Coders recorded the start and stop times of these distracting activities, 
capturing the frequency and duration of each behavior. This allowed for a 
detailed analysis of distraction and inattention on a trip-by-trip basis, as well 
as for the entire day's drive. Furthermore, the aggregate measure was used to 
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provide an overall assessment of secondary task engagement by summing all 
secondary task interactions across the various activities. 

Appendix A provides additional information about the coding scheme for 
distraction and inattention behaviors, which includes definitions, examples, and coding 
instructions to ensure clarity and consistency among coders.  

Statistical Analysis. BORIS provided a .csv file as output for each coded video, listing 
details for each task in separate columns with one row per task. To analyze this data, 
several R scripts were generated that converted outputs into a time-series format, with 
tasks organized in columns, time represented by each row, and a binary task state 
indicator listed in each column. This organization allowed for tasks to be combined and 
collapsed as required for various analyses. Transformations were primarily carried out 
using base R (R Core Team, 2022) and packages within the Tidyverse (Wickham et al., 
2019). 

To account for sources of non-independence in the data (i.e., repeated measures 
within each participant) and any missing data, data were analyzed with linear mixed-
effects models using the lmer function found in the lmerTest library (Kuznetsova et al., 
2017). Participant ID and the AM/PM drive indicator were included in all models as 
random intercepts and, where appropriate, Session and Condition were input as 
predictor variables (see bulleted list below). Outcome variables were dictated by the 
specific question and included fatigue, fidgeting, secondary task, etc., as described in the 
video coding rubric. Likelihood ratio tests were run using the ANOVA function in the 
stats package to test the significance of all effects, and pairwise comparisons were run 
using the contrasts function of the lmerTest library. Significance levels for all analyses 
were set at p < .05, p < .01, and p < .001. 

Predictor variables of interest were as follows: 

• Session – fixed continuous factor. This was the numerical indicator of week 
(e.g., 1, 2, 3, etc.). Session was handled as a continuous fixed factor for all 
relevant analyses but treated as discrete for plotting purposes. 

• Condition – fixed discrete factor with 3 levels. The “Automation: Yes” day 
provided two levels of Condition, which were Automation-L2 and Naturalistic 
Control. The “Automation: No” day provided the third level of Condition which 
was Experimental Control. Condition was also entered as a discrete fixed effect 
in relevant models. 

• Subject – random discrete factor. This was the simple subject identifier. 
Subject was modeled as a random intercept in all analyses. 

• AM_PM – random discrete factor. Simple identifier of the AM or PM drives 
(e.g., the morning and evening commutes for each participant). AM_PM was 
also entered as a random slope in all analyses.  
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Results 

Data Overview 

Video Record. Video results were obtained from 30 participants, resulting in a total of 
670 videos (353 Naturalistic; 317 Experimental Controls). Within the experimental 
control days, 26 videos contained instances of Level 2 automation, indicating a 
misunderstanding of the task for that day. These videos were excluded from the analysis 
leaving 291 baseline videos. For each week 1 through 8, data from the following number 
of participants were available to code: 26, 30, 30, 28, 27, 22, 17, and 12, respectively. Of 
the 670 available videos, 308 were double-coded and 80 were coded by three or more 
different reductionists. In total, 1060 coding records were entered into the analysis. 
Results from redundantly coded videos were averaged.  

Automation Use. Coding only one Naturalistic and one Experimental Control Day per 
week resulted in 297 total hours of coded video with just over half collected during 
Naturalistic driving (161 hours). Overall, participants used automation between 25% and 
99% of the time during the naturalistic observation period, resulting in 124 hours of 
video where participants engaged Level 2 automation. 

Appendix B includes mean and standard error data for all of the analyses in the 
subsections below.  

Level 2 Automation Usage 

Two research questions related to operator trust and usage of Level 2 Automation: 

• AU1 – Does experience (based on number of weeks of system use) with 
automation change the frequency with which drivers activate the automation? 

• AU2 – How does the time to re-engage the system (after a system 
disengagement) change with experience? 

To address these questions a mixed effects model was generated that treated 
frequency of usage and reengagement time as outcome measures with Week as a fixed 
effect and Subject and AM/PM drives as random effects. Re-engagement time was 
quantified as the amount of time between disengagement of automation and the 
participant actively re-engaging it, reflecting a difference score that would be expected to 
decrease over time if practice influenced reengagement. 

Regarding the first question (AU1), results indicated that Week did not 
significantly predict usage frequency, F(1,309) = 1.88, p = .17 (see Figure 12). Similarly, 
there was no significant effect of Week on reengagement time, F(1, 284) = 0.10, p = .75 
(AU2). Together these findings suggest that participants in this research maintained a 
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similar level and interaction pattern of automation use throughout the 6 to 8 weeks of 
observation.  

 

Figure 12. Automation-L2 Usage: Automation-L2 use by Week. 

Warnings and Driving Demand 

Two questions related to the misuse and unintended consequences of Level 2 automation 
use were identified: 

• WD1 – Does the frequency of system warnings change over time? 
• WD2 – Does the frequency of automation use change during poor driving 

conditions? 

Regarding WD1, system warnings occurred when drivers either failed to apply 
sufficient tension to the steering wheel (Tesla, Nissan, Volvo), or failed to maintain their 
eyes on the forward roadway (Cadillac). A mixed effects model was generated that 
treated system warning frequency as the outcome measure with Week as a fixed effect 
and Subject and AM/PM drives as random effects. Of those participants that experienced 
warnings, the range of warning frequencies was 0.03 to 1.93 per minute. Results 
indicated that for these participants, warning frequencies increased during the 
observation period, F(1, 423) = 9.84, p = .002, suggesting that as drivers became more 
comfortable with automation they paid less attention to the driving task (see Figure 13, 
left panel). 

To address the second question (WD2), we looked at the relationship between 
driving demand, as coded by the number of poor conditions that were present in the 
driving environment and the use of automation. The poor conditions analyzed included 
traffic impairing driving speed, weather (rain, snow, ice, or fog), road construction, 
emergency vehicles, and other outside influences affecting driving. Among these, traffic 
impairing driving speed was the most common poor condition observed. It is important 
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to note that poor weather conditions can cause the system to disengage; however, in 
practice, this was rarely observed. 

Results indicated that as the demand of the driving task increased, from Low to 
Moderate to High, the prevalence of automation use decreased (F(2, 1072) = 9.93, p <.001). 
These results suggest that drivers were aware of roadway demand and were less likely to 
use Level 2 automation when the roadway demands were higher (see Figure 13, right 
panel). 

 

 

Figure 13. Misuse and Unintended Consequences: System Warnings by Week (left panel) and 
Automation use by Driving Demand (right panel). 

Fatigue and Fidgeting 

Two classes of observable behaviors related to arousal were coded in the video to 
address the following: 

• FF1 - Do drivers show increased signs of fatigue when using automation and 
does this change over time? 

• FF2 - Do drivers show increased signs of fidgeting when using automation and 
does this change over time? 

For each question, three linear mixed effects models were generated with either 
Fatigue or Fidgeting behaviors treated as the outcome measure. Week, Condition, and 
Week by Condition were treated as fixed effects, while Subject and AM/PM drives were 
treated as random effects. Instead of using a single model with all the predictors 
included, three separate models were conducted for each predictor (Week, Condition, 
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and Week X Condition) to reduce complexity and provide a clearer interpretation of the 
individual effects. Pairwise comparisons were completed on the effect of Condition 
(Automation-L2, Experimental Control, and Naturalistic Control) to determine how the 
different conditions affected fatigue and arousal. 

Regarding the first question (FF1), there was a main effect of Condition on Fatigue 
(F(2,882) = 3.84, p = .02), but no significant effect of Week (F(1,901) = 1.12, p = .29) or 
interaction (F(2, 878) = 0.27, p = .76). As shown in Figure 14, pairwise comparisons 
indicated that Fatigue was higher in the Automation-L2 condition than in the Naturalistic 
Control condition. However, it did not differ statistically between the Automation-L2 
condition and the Experimental Control condition, although it was nominally higher (see 
also Table 5).  

With respect to the second question (FF2), there was a main effects of Condition 
(F(2,868) = 11.8, p < .001) and Week (F(1,894) = 10.8, p = .001) on fidgeting behaviors, but 
no interaction (F(2, 865) = 0.54, p = .58). As shown in Figure 14, pairwise comparisons 
indicated that the interpretation of fidgeting behavior depended on the type of control 
that was used. Drivers fidgeted relatively more during the Automation-L2 condition 
compared to the Naturalistic Control condition but showed no relative difference when 
compared to the Experimental Control condition (see also Table 5). The effect of fidgeting 
over week was relatively straightforward; fidgeting behaviors increased throughout the 
observation period (see Figure 15). 

In summary, a relative increase in fatigue and fidgeting was observed in the 
Automation-L2 condition compared to the Naturalistic Control condition. Fidgeting 
behavior was also found to increase throughout the 6 to 8 weeks of study participation. 
However, when compared to the Experimental Control condition, neither fatigue nor 
fidgeting appeared to be affected by automation use. 
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Figure 14. Fatigue and fidgeting by condition. Significant pairwise comparisons are indicated in the 
chart with asterisks. 

 

Table 5. Pairwise comparisons between levels of condition for fatigue and fidgeting behavior.  

Pairwise Comparisons t ratio df p value 

Fatigue 
Automation-L2 vs. Experimental Control −1.38 879 .35 
Automation-L2 vs. Naturalistic Control −2.77 876 .02* 
Experimental Control vs. Naturalistic Control 1.35 878 .37 

Fidgeting 
Automation-L2 vs. Experimental Control 2.27 874 .06 
Automation-L2 vs. Naturalistic Control −2.60 873 .03* 
Experimental Control vs. Naturalistic Control 4.84 874 <.001** 

Note. p < .05*, p < .01**, p < .001*** 
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Figure 15. Observable percentage of fidgeting by Week. 

Secondary Task Engagement 

Two classes of observable behaviors related to secondary task engagement were coded 
in the videos. These were used to address two sets of questions on driver secondary task 
engagements during automation use. 

• ST1 – How does the frequency of secondary task use (non-driving related) 
change during Level 2 use and over time? 

• ST2 - How does the frequency of task type, mode of interaction (voice vs 
manual), and interface (cell phone vs. In Vehicle Information System [IVIS]) 
change during Level 2 use and manual driving? 

To address these questions, several distinct secondary task behaviors were coded, 
including radio listening, text messaging, phone conversation, navigation, and video 
interaction. Each of these tasks was analyzed individually and in aggregate, which 
represents the sum of all secondary task interactions. 

Regarding the first question (ST1), results indicated a main effect of Condition on 
the task aggregate, radio listening, and text messaging tasks while the effect of Week was 
significant on the task aggregate and text messaging tasks (see Figure 16 and Table 6). 
Pairwise comparisons of the task aggregate showed that greater secondary task 
engagement was observed in the Automation-L2 condition compared to the Naturalistic 
Control condition but not the Experimental Control condition; both controls differed 
from each other (See Figure 17 and Table 7). Pairwise comparisons of the radio listening 
task indicated that it was more common in the Automation-L2 condition than either of 
the control conditions. Finally, text messaging was found to be more common in the 
Automation-L2 condition than in the Naturalistic Control condition. A Condition x Week 
interaction was also observed on the navigation task; however, because neither of the 
main effects of Condition and Week were significant, the interpretation of this 
interaction is unclear. 
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Figure 16. Secondary task engagement to task aggregate and text messaging. The y-axis indicates 
the percentage of time that any of the tasks were active. In the case of the task aggregate, the 
observable percentages over 100 indicate that that on average more than one task was active at any 
given time. 

 

Table 6. Statistical tests for secondary tasks. 

Main Effects Condition Week Condition x Week 

Task Aggregate F(2,873) = 15.6,  
p < .001*** 

F(1,883) = 12.8,  
p < .001*** 

F(1,869) = 1.18,  
p = .03* 

Radio Listening F(2,872) = 9.59,  
p < .001*** 

F(1,883) = 0.14,  
p = .71 

F(2,868) = 0.24,  
p = .79 

Text Messaging F(2,871) = 3.27,  
p = .04* 

F(1,878) = 10.7,  
p = .001*** 

F(2,868) = 0.23,  
p = .80 

Phone Conversation F(2,873) = 1.00,  
p = .33 

F(1,894) = 2.86,  
p = .09 

F(2,870) = 0.33,  
p = .72 

Navigation F(2,871) = 0.35,  
p = .71 

F(1,880) = 0.84,  
p = .36 

F(2,868) = 4.93,  
p = .007** 

Video Watching F(2,872) = 0.33,  
p = .72 

F(1,882) = 0.05,  
p = .82 

F(2,868) = 0.03,  
p = .97 

Note. p < .05*, p < .01**, p < .001*** 
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Figure 17. Secondary task engagement by condition, collapsed across Week. 
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Table 7. Pairwise comparisons between condition by different secondary tasks.  

Pairwise Comparisons t ratio df p value 

Task Aggregate 
Automation-L2 vs. Experimental Control −1.47 872 .31 
Automation-L2 vs. Naturalistic Control −5.41 872 <.001*** 
Experimental Control vs. Naturalistic Control −5.41 872 <.001*** 

Radio 
Automation-L2 vs. Experimental Control −2.61 872 .03* 
Automation-L2 vs. Naturalistic Control −4.35 872 <.001*** 
Experimental Control vs. Naturalistic Control 1.67 872 .22 

Texting 
Automation-L2 vs. Experimental Control −1.14 872 .49 
Automation-L2 vs. Naturalistic Control −2.55 871 .03* 
Experimental Control vs. Naturalistic Control 1.38 872 .35 

Phone Conversation 
Automation-L2 vs. Experimental Control 1.43 874 .33 
Automation-L2 vs. Naturalistic Control 0.37 873 .93 
Experimental Control vs. Naturalistic Control 1.07 873 .53 

Navigation 
Automation-L2 vs. Experimental Control −0.82 872 .69 
Automation-L2 vs. Naturalistic Control −0.28 872 .96 
Experimental Control vs. Naturalistic Control −0.55 872 .85 

Video 
Automation-L2 vs. Experimental Control 0.26 872 .96 
Automation-L2 vs. Naturalistic Control −0.54 872 .85 
Experimental Control vs. Naturalistic Control 0.80 872 .70 

Note. p < .05*, p < .01**, p < .001*** 

To address the second set of questions (ST2), all tasks were collapsed according to 
the modality of interaction (either auditory-vocal or visual-manual). This grouped all 
secondary task interactions that occurred either through the vehicle interface or through 
a secondary device such as a smartphone. Results indicated no significant effects of 
Condition but a main effect of Week on the aggregate of visual-manual tasks (see Figure 
18 and Table 8). Thus, irrespective of the condition, drivers were more likely to engage in 
secondary visual-manual tasks with each week of vehicle use. Data were then 
reaggregated according to the interface (either smartphone or vehicle IVIS). Results 
indicated a main effect of Condition on vehicle IVIS use, but pairwise comparisons failed 
to indicate any significant contrasts (Table 9). Results also showed a main effect of Week 
on smartphone interactions, with smartphone interactions significantly increasing 
during each week of the study. Taken together, these findings indicate that drivers 
increased their visual-manual interactions with their smartphones with each week of the 
study, but the driving condition, either with or without automation, did not seem to 
affect the findings. 
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Figure 18. Frequency of engagement in visual-manual and smartphone interactions across week.  

  

Table 8. Statistical tests for modality of interaction and interface type.  

 Main Effects Condition Week Condition x Week 

Auditory-Verbal F(2,878) = 1.71, p = .18 F(1,890) = 0.17, p = .68 F(2,874) = 0.37, p = .69 
Visual-Manual F(2,871) = 2.86, p = .06 F(1,880) = 15.4, p < .001*** F(2,868) = 0.28, p = .76 
Smartphone F(2,871) = 2.29, p = .10 F(1,880) = 16.3, p < .001*** F(2,868) = 0.10, p = .91 
Vehicle IVIS F(2,877) = 3.45, p = .03* F(1,902) <.001, p = .98 F(2,873) = 0.44, p = .65 

Note. p < .05*, p < .01**, p < .001*** 
 

Table 9. Pairwise comparisons for modality of interaction and interface by condition.  

Pairwise Comparisons t ratio df p value 

Auditory-Verbal 

Automation-L2 vs. Experimental Control 1.15 882 .48 
Automation-L2 vs. Naturalistic Control −0.69 878 .77 

Experimental Control vs. Naturalistic Control 1.83 880 .16 

Visual-Manual 
Automation-L2 vs. Experimental Control −0.72 872 .75 
Automation-L2 vs. Naturalistic Control −2.34 872 .05 
Experimental Control vs. Naturalistic Control 1.58 872 .25 

Smartphone 

Automation-L2 vs. Experimental Control −0.58 872 .83 
Automation-L2 vs. Naturalistic Control −2.08 872 .11 

Experimental Control vs. Naturalistic Control 1.47 872 .31 

Vehicle IVIS 
Automation-L2 vs. Experimental Control −0.58 872 .83 
Automation-L2 vs. Naturalistic Control −2.08 872 .10 
Experimental Control vs. Naturalistic Control 1.47 872 .31 
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Discussion 

The primary aim of this research was to better understand driver behavior when using 
Level 2 vehicle automation as driver exposure to and familiarity with the technology 
grows. Video data was collected and analyzed on 30 drivers, each of whom drove one of 
five partially automated (SAE Level 2), instrumented research vehicles for 6 to 8 weeks. 
Critically, participants were instructed not to use automation on one day each week (the 
experimental control day). This experimental control was compared with a more 
traditional naturalistic control condition where, for one reason or another, participants 
chose not to use automation even though it was available to them. Driver behavior in 
each of the two control conditions was then contrasted with behavior observed during 
automation use. Analyses center on four topical research areas: automation use, 
warnings and driving demand, fatigue and fidgeting, and secondary task engagement. 
Results from this hybrid research approach provide data that both bolster and challenge 
previous findings in each of these areas. 

Use of Automation  

Drivers in this research used Level 2 vehicle automation more than 70% of the time, an 
amount that stayed relatively consistent over the 6- to 8-week observation period. This 
high level of automation use was likely driven by the requirement that participants 
commute at least 40 minutes each day, to and from work, to be eligible for study 
participation, along with instructions provided to the participant to use the system as 
often as they were comfortable. Additionally, sections of each commute that were not on 
controlled access highways were not coded. These usage trends compare favorably with 
results obtained by Stapel et al. (2022), who observed highway use of Level 2 automation 
ranging from 57% to 63% with no reduction in use over a 12-week observation period. 
This steady use rate of automation suggests that participants remained comfortable with 
the automation performance, the monitoring requirements, and the potential benefits 
that it may have provided while driving. 

Warnings and Driving Demand 

Across the 6 to 8 weeks of automation use, an increase in the frequency of system 
warnings was observed as drivers become more experienced with the Level 2 vehicle 
automation. While the specific cause of this increase was not clear, the finding suggests 
an increased comfort with the automation and a tendency toward a more relaxed 
automation monitoring strategy over time. Warnings were found to vary widely between 
individuals. Some drivers rarely, if ever, experienced warnings while others received 
several warnings per minute and treated them as if they were simply a nuisance that 
could quickly be quieted through gentle pressure on the steering wheel.  
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Poor conditions related to weather, traffic, construction, emergency vehicles, or 
other events that would reasonably be expected to adversely affect driving were coded 
and aggregated to form a measure of driving demand. Results indicated that drivers 
were less likely to use vehicle automation when driving demands were higher. This 
suggests that drivers were aware of changes in roadway demand and were more likely to 
use automation when it was safer to do so. This is a key finding that helps to resolve 
differences that were observed in the experimental and naturalistic control conditions 
(discussed below). 

Fatigue and Fidgeting 

As discussed, a major safety concern with the use of Level 2 vehicle automation is that it 
may lead to an increase in driver fatigue. Findings were mixed in the current data. When 
contrasting the fatigue observed in the Automation-L2 condition with the Experimental 
Control condition, it was found that automation use did not increase either fatigue or 
fidgeting behaviors. However, an increase in fatigue was observed when comparing the 
Automation-L2 condition with the Naturalistic Control condition. Additionally, a 
decrease in fidgeting was also observed when comparing the Automation-L2 condition 
with the Naturalistic Control condition. 

The finding that automation was or was not associated with fatigue and fidgeting 
depending on the benchmark used adds an interesting nuance to the literature and 
reinforces the importance of a strong and valid control condition. Automation is often 
singled out as the cause of fatigue in popular videos where drivers are seen to be 
sleeping as the vehicle drives itself. While this is clearly dangerous, it is not clear from 
such cases whether these drivers would have done the same under manual control and 
possibly driven off the road. If this were known, one might conclude that the automation 
prevented a fatigue-related crash. The answer to the question of whether automation 
does or does not lead to driver fatigue hinges on the question: compared to what? 
Compared to a strong experimental control, these data suggest that automation may not 
lead to levels of fatigue suggested by online videos and some prior research (ABC, 2023; 
Vogelpohl et al., 2019; Lu et al., 2021).  

Secondary Task Engagement 

One of the most frequently reported findings related to automation use is that it leads to 
an increase in the frequency of secondary task engagement. This is a significant safety 
concern for lower-level automated vehicles (Levels 1 and 2 and to a lesser extent Level 
3), as secondary task use has been shown to reduce a driver’s ability to take over vehicle 
control quickly and safely when required. Patterns of increased secondary task use with 
automation were found in the current study. Again, however, the nature and potential 
severity of these findings depended on which control condition is used for the 
comparison. When using the stronger Experimental Control, the results indicated that 
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drivers were more likely to listen to the radio when automation was engaged, which, 
based on our prior work, is not a significant safety concern (Strayer et al., 2013). 
However, when compared to the Naturalistic Control condition, an increase in text 
messaging and the task aggregate, essentially the sum of all secondary task interactions, 
is also seen. Taken together, these findings indicate several notable secondary task 
trends, but again, they do not necessarily show the concerning increase in distracting 
behaviors that some have suggested occurs with vehicle automation.  

Experimental versus Naturalistic Controls 

The strength of naturalistic research is that it eschews experimental intervention in 
favor of naturalistic observation. However, two major limitations of the naturalistic 
method make it a poor approach to resolve the behavioral profile associated with 
automation use. The first limitation is that drivers may selectively choose when to 
engage in secondary tasks for reasons that are important but not, perhaps, obvious. This 
is especially problematic with automation, given the possibility that drivers use 
automation only when they feel it is appropriate. The selection of baseline events from 
the remaining drives (i.e., when automation is not engaged) is therefore confounded by 
the fact that drivers may feel that they are unsuitable for automation use. The second 
limitation of uncontrolled naturalistic designs for evaluation of automation use is that 
they often rely on the use of machine vision to automatically detect vehicle states. While 
these approaches have improved greatly, they require significant training data to 
implement and are sensitive to visual noise. The hybrid design implemented in this 
research helps ameliorate both issues. 

Functional Vigilance 

Drivers in the Experimental Control condition exhibited a behavioral profile that was 
markedly different from that observed in the Naturalistic Control condition. In most 
cases, behavior in the Experimental Control fell in between the Automation-L2 and 
Naturalistic Control conditions (e.g., fatigue, the secondary task aggregate, radio 
listening, and text messaging). In the case of fidgeting, it was shown that the most 
fidgeting was observed in the Experimental Control condition when drivers were not 
allowed to use automation. Considering the finding that automation use was lower when 
driving demands were higher, then one compelling and plausible explanation for these 
findings is that driving demand may mediate the relationship between automation use 
and secondary task engagements such that drivers may be less likely to use automation 
and less likely to engage in secondary tasks when driving demands are higher. 

Additionally, the observation that results from the Experimental Control condition 
often fell between the Automation-L2 and Naturalistic Control conditions fits with the 
fact that driving demand was experimentally controlled to be comparable in the 
Automation: YES (Automation-L2 + Naturalistic Control) and the Automation: No 
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(Experimental Control) days. Overall, these results are consistent with the hypothesis 
that drivers maintain a level of functional vigilance when using automation that allows 
them to naturally slip in and out of automation as roadway demands change (Fridman et 
al., 2017). 

Behavioral Adaptation 

The current findings, when interpreted through the lens of the three-phase model of 
vehicle automation proposed by Dunn et al. (2019), suggest a trajectory of behavioral 
adaptation. A key indication of this adaptation is the observed increase in system 
warnings over time. This is consistent with the "post-novelty operational phase" of the 
model, where drivers, having developed a mental model of system operation, test the 
boundaries of the system's capabilities. The rising frequency of warnings suggests that 
drivers are growing more comfortable with the system, exploring its limitations, and 
responding to these cues as they navigate the automation. This trend might reflect a 
maturation of understanding the system, underscoring the notion of a learning curve 
associated with the use of advanced driver-assistance systems. 

The increase in secondary task usage, reflected in the task aggregate (all 
secondary tasks combined) and the text messaging task, also corresponds with the 
behavioral adaptation concept. It indicates that as drivers grow more familiar with the 
system, they are more likely to engage in secondary tasks over time. However, the lack of 
interaction between secondary task engagements and Condition (Automation-L2, 
Experimental Control, Naturalistic Control) suggests that these behaviors may not be a 
direct consequence of over-reliance on the automation system. Instead, they might 
reflect a general trend of drivers becoming more comfortable with multitasking in these 
specific research vehicles over time, regardless of automation capabilities. 

The rise in visual-manual task interactions with a smartphone over time further 
supports this trend. However, as with the task aggregate and text messaging behaviors, 
there was no interaction with Condition. This might have been expected if drivers were 
transitioning into overreliance within the "experienced user phase" of the model. The 
absence of this interaction in our data suggests that while drivers are engaging more in 
secondary tasks over time, they are not necessarily doing so as a direct consequence of 
using the automation system, nor are they doing so in a manner inconsistent with their 
driving behavior when automation is not available. 

Overall, there is some evidence of behavioral adaptation in the current data, but it 
appears to be mostly functional in nature. That is, drivers in this research showed signs 
of adapting their behavior to automation but did not necessarily show strong signs of 
overreliance on the system to the point of compromising safety. 
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Limitations 

While this study offers important insights into driver behavior during Level 2 
automation, there are several limitations that should be acknowledged. These limitations 
pertain to the sample size, the duration of the study, the potential for Hawthorne effect, 
and the specific automation technology employed in the research vehicles, among other 
possible limitations. 

• Sample size: The sample size of 30 participants may not be representative of 
the broader population of drivers. While the study aimed to recruit a diverse 
group of participants, a larger sample would allow for a more accurate 
representation of the general population, increased the statistical power, and 
increase the generalizability of the findings. Future studies should consider 
increasing the number of participants to better understand the effects of 
Level 2 automation on a wider range of drivers. 

• Study duration: The study duration of 6 to 8 weeks may not be sufficient to 
fully understand the long-term effects of Level 2 automation on driver 
behavior. It is possible that drivers’ behaviors may continue to evolve beyond 
the study period, as they become more familiar with and reliant on the 
technology. Future research should explore longer observation periods to 
better understand how drivers adapt to automation over time. 

• Hawthorne effect: The potential for the Hawthorne effect should also be 
considered. Participants were aware that they were part of a study, which may 
have influenced their behavior during the observation period. It is possible 
that drivers may have behaved more cautiously or differently than they would 
have under normal, unobserved circumstances (e.g., if they were driving their 
own and not a study-owned vehicles). Also, due to IRB requirements, drivers in 
the current study received much more comprehensive a priori training 
regarding the vehicle automation compared to what real world owners of 
these vehicles might receive. These represent tricky issues that apply broadly 
to most driving research, however, future research should consider methods 
for mitigating the impact of the Hawthorne effect on driver behavior. 

Future Directions 

The findings presented in this study highlight several intriguing aspects that warrant 
further investigation. Firstly, understanding why drivers opt to use vehicle automation 
in certain scenarios and not others is crucial. Moreover, the factors that prompt drivers 
to disengage automation in favor of manual driving need to be explored. These questions 
hold considerable relevance not only for the design, marketing, and general uptake of 
vehicle automation but are also pivotal in the appropriate selection of baseline driving 
behavior in naturalistic driving research. These factors were touched upon in this study, 
but a comprehensive understanding is yet to be reached. 
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Secondly, future research should aim to clearly define the potential benefits and 
implications of vehicle automation for drivers. A crucial question is to determine what 
drivers should expect to gain from vehicle automation and how they should utilize their 
freed attention. In this study, for instance, there was an uptick in radio listening during 
automation use; while radio use is seemingly harmless, is engaging in activities like text 
messaging or video viewing appropriate when automation is handling most of the 
driving? These are important questions to address moving forward and as new forms of 
automation are developed and implemented. 

Finally, apart from an increase in radio listening with Level 2 automation, these 
data suggest that drivers may be no more likely to engage in secondary tasks when using 
automation than they are when manually driving. This is a provocative finding that 
needs to be further investigated. Understanding the true impact of automation on driver 
behavior, particularly in terms of secondary task engagement, is crucial for designing 
effective policies and guidelines to ensure the safe integration of automated vehicles into 
our transportation system. 
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PART 3 (Survey Study): Automated Driving Experiences, Attention, and 
Intentions Following Extensive On-Road Usage of a Level 2 Automation 
Vehicle3 

The survey phase of this study aimed to gauge driver perceptions and attitudes along a 
number of dimensions as they gained experience with the vehicles. Additional 
background and motivation are provided in the sub-sections below, followed by an 
overview of the main objectives of Part 3.  

Research on Perceptions of Automated Driving Systems 

Most of the research on perceptions of automated driving conducted during the last 
decade has focused on drivers’ knowledge of and evaluations of advanced driver 
assistance systems (e.g., Beggiato & Krems, 2013; Gaspar & Carney, 2019; Körber et al., 
2018; McDonald et al., 2018; Sanbonmatsu et al., 2018; Walker et al., 2018). Owners of 
partially automated vehicles generally report high levels of trust in the technology and 
perceive it to be useful and safe (e.g., McDonald et al., 2018). The acceptance of 
automated driving systems develops quickly with usage (e.g., Beggiato et al., 2015; 
Walker et al., 2018). Nevertheless, consumers sometimes lack understanding of the 
limitations of automated systems and over trust the technology (e.g., McDonald et al., 
2018). Not surprisingly, the perceived trustworthiness, safety, and usability of automated 
systems diminish significantly when passengers experience on-road failures of the 
automation (e.g., Xu et al., 2021).  

Both self-report and observational studies suggest that attention to driving is often 
lower and secondary activities are often greater during automated driving (e.g., Banks et 
al, 2018; Dunn et al., 2019; Gaspar & Carney, 2019; Körber et al., 2018). The perceived 
trustworthiness, usefulness, and safeness of the technologies have been linked to lower 
engagement during automated driving and delays in the manual take-over of vehicles, as 
well as stronger behavioral intentions to use automated systems (e.g., Körber et al., 2018; 
Morales-Alvarez et al., 2020; Payre et al., 2016; Xu et al., 2021). 

Relatively few studies have examined the effects of automation on the driving 
experience. Limited research suggests that advanced assistance systems may reduce the 
stress and increase the comfort of driving. However, some of these studies examined the 
self-reports of purchasers of automated vehicles (e.g., Eichelberger & McCartt, 2016) who 
are likely to be favorably biased in their evaluations since they were willing to pay for 
the automation and may have sought to rationalize their expenditures. Other studies of 

                                                   

3 Section contributors: David M. Sanbonmatsu, Kaedyn W. Crabtree, Amy S. McDonnell, Joel M. 
Cooper, and David L. Strayer 
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the experience of automated driving have been limited to the examination of simulated 
rather than actual on-road travel (Hartwich et al., 2018) or passengers of automated 
vehicles rather than actual drivers (Liu et al., 2021). 

Some of these shortcomings were addressed by a previous on-road study of 
automated driving (Cooley et al., 2022). Participants who had never used advanced 
driving assistance systems drove a Tesla Model 3 sedan with Level 2 automation engaged 
or not engaged on a four-lane interstate freeway. After a single drive with the 
automation, the participants reported that driving was more enjoyable and less stressful 
during automated driving compared with manual driving. They also indicated that they 
were less anxious and nervous, and able to relax more with the automation. Participants 
did not report reduced attention to driving or greater engagement in secondary activities 
when the automated systems were operating. The positive experiences of the first-time 
users suggested that consumers may not need a great deal of persuading to develop an 
appreciation for partially automated vehicles.  

The surprisingly favorable assessments led the researchers to speculate that an 
important contributor to the positive initial driving experience may have been the 
favorable road conditions of the test drive. The study was conducted during good 
weather on a section of a major freeway that was characterized by long straightaways 
and little traffic. The roadway is likely to have minimized concerns about the automation 
malfunctioning and causing an accident. However, the experience of automated driving 
may not be so favorable in normal travel conditions and over a longer period of time. 

Researchers also believed that the effects of the automated systems on the 
attention and behavior of drivers may have been minimal because they were using it for 
the first time. As familiarity increases and drivers become even more comfortable with 
and reliant on automation, they may attend less to safely operating the vehicle and 
engage in more activities unrelated to driving (e.g., Banks et al, 2018; Dunn et al., 2019). 

Current Survey Study  

The current study was conducted to examine how perceptions of participants who had 
never used automated systems changed over the course of extensive on-road driving of a 
Level 2 vehicle. Participants were monitored and assessed continuously during 6 to 
8 weeks of driving, which enabled researchers to examine the changes in driving 
experience, attention, and behavior that occur with increasing familiarity and usage of 
the automation. Participants’ intentions to use and purchase automated systems in the 
future were also examined, along with how intentions interacted with perceived 
favorableness of automated driving experiences. 

Finally, the study explored how pre-existing evaluations of and trust in automated 
systems may shape the experience of lengthy usage of automated systems. A large body 
of research has shown that pre-existing beliefs and hypotheses often bias the processing 
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of information and personal experiences (e.g., Sanbonmatsu et al., 1998; Von Hippel & 
Tyre, 1995). As a result, people often interpret and remember events in a way that 
confirms their expectations. In this study, it was hypothesized that positive pre-driving 
beliefs about automation would be associated with greater enjoyment and less stress 
during automated driving, less attention to driving, and stronger intentions to use and 
purchase automated systems in the future. In particular, it was anticipated that 
participants who expressed trust in automated driving systems and trust in general 
technology prior to the study would report greater appreciation for driving with the 
automation. Before driving the Level 2 vehicle, participants completed the Propensity to 
Trust in General Technology Scale (McKnight et al., 2002), which measures faith in 
general technology (i.e., the belief that technology is usually reliable, functional, and 
helpful) and trusting stance (i.e., the belief that positive outcomes will result from relying 
on technology). 

Method 

The participants, vehicles, and general protocol are described in Parts 1 and 2. This 
section describes additional elements related to the surveys and their administration.  

Procedure 

Before the first test drive in the first experimental session (Part 1), participants 
completed questionnaires about their demographic backgrounds, health, personalities, 
knowledge of automated systems, and driving histories. They also filled out the Beliefs 
about Automated Systems Survey and the Propensity to Trust in General Technology 
Scale (a description of these measures is presented in “Survey Measures” below). The 
surveys were administered on a tablet using REDCap software. 

After the initial experimental session, participants took the vehicle home and then 
drove the vehicle on their daily commute to and from work (described in Part 2). Shortly 
after taking possession of the vehicle, participants completed an online survey about 
their assessments of the vehicle’s automated systems and their automated driving 
experiences and behavior (see the “Bi-Weekly Survey” in “Survey Measures”). They filled 
out this survey every two weeks for a total of four times and received $20 for completing 
each survey. 

Participants drove the vehicle each workday for 6 to 8 weeks before completing 
the second experimental session. The number of weeks varied because of difficulties that 
arose in scheduling the return of the vehicle. On the day participants returned the 
vehicle, they completed a final set of questionnaires about their beliefs and knowledge of 
automated systems on a tablet including measures of their automated driving 
experiences, attention, and intentions. 
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Survey Measures 

Beliefs About Automated Driving Systems. The first set of questions measured 
participant’s evaluations and expectations of the automated systems prior to driving a 
Level 2 automation vehicle in the study. Participants indicated the following: 

• “How dependable are automated driving systems?” on a 5-point scale 
anchored by 1 = not at all and 5 = highly dependable 

• “How well do automated driving systems work?” on a 5-point scale anchored 
by 1 = do not work well at all and 5 = work extremely well 

• “How safe are automated driving systems?” on a 5-point scale anchored by 
1 = not at all safe and 5 = highly safe 

• “How much do you trust automated driving systems?” on a 5-point scale 
anchored by 1 = do not trust at all and 5 = trust completely 

• “How useful are automated driving systems to you?” on a 5-point scale 
anchored by 1 = not at all useful and 5 = highly useful 

• “What is your overall evaluation of automated driving systems?” on a 5-point 
scale anchored by 1 = highly negative and 5 = highly positive 

Participants also conveyed their agreement with the following statements on 5-
point scales anchored by 1 = disagree completely and 5 = agree completely: 

• “Automated driving systems are susceptible to malfunctioning”  
• “Automated driving systems handle a car well in terms of steering, 

acceleration, and braking” 
• “Automated driving systems are prone to turning off unexpectedly”  

Propensity to Trust in General Technology. Prior to driving, participants completed 
the Propensity to Trust in General Technology Scale (McKnight et al., 2011). The scale 
consists of two sub-scales with four items pertaining to “faith in general technology” and 
three items related to “trusting stance.” Participants indicated their agreement with 
items that reflect the degree to which technology is assumed to be reliable and helpful 
(e.g., “I believe that most technologies are effective at what they are designed to do”). 
Other items, such as “I usually trust a technology until it gives me a reason not to trust 
it,” measure the expectation that positive outcomes will result from relying on 
technology. The mean responses to the trusting stance and faith in general technology 
sub-scales were averaged to create a single index of the propensity to trust in general 
technology.  

Bi-Weekly Survey. The first three questions of the Bi-Weekly Survey measured 
participants’ trust, perceived utility, and favorability of automated systems. Specifically, 
participants reported the following:  

• “How much do you trust the automated driving systems?” on a 5-point scale 
anchored by 1 = do not trust at all 5 = trust completely 
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• “How useful are the automated driving systems to you?” on a 5-point scale 
anchored 1 = not at all useful 5 = highly useful  

• “What is your overall evaluation of the automated driving systems?” on a 
5-point scale anchored 1 = highly negative 5 = highly positive 

Subsequent questions addressed participants’ automated driving experience, 
attention during automated driving, and usage of the systems. Participants indicated 
their agreement with the following statements on 5-point scales anchored by 1 = disagree 
completely and 5 = agree completely:  

• “The automated driving systems reduce the stress of driving” 
• “I get bored and sleepy when the automated driving systems are on” 
• “I am anxious and nervous when the automated driving systems are on” 
• “I tend to allow my thoughts to wander while the automated driving systems 

are on” 
• “I engage in more activities unrelated to driving while the car is driving in 

autonomous mode” 
• “I am totally focused on the road and driving safely even when the automated 

systems are on” 

Finally, participants conveyed their usage of automated driving systems by 
indicating their agreement with the following statements:  

• “I do not use the automated systems in heavy traffic”  
• “I do not use the automated systems on hilly or curvy roadways” 
• “I utilize the automated driving systems in the vehicle as much as possible” 

Driving Experiences and Attention during Automated Driving. At the end of the 
study, participants evaluated the automated driving systems by indicating their 
agreement with the following statements on 5-point scales anchored by 1 = disagree 
completely and 5 = agree completely:  

• “The automated driving system made traveling safer”  
• “I was concerned that the automated driving systems would shut off 

unexpectedly” 

They also conveyed the favorableness of their experience of automated driving by 
indicating their agreement with the following statements: 

• “I was able to relax when the automated driving systems were on” 
• “The automated driving system made traveling boring for me” 
• “The automated driving system made traveling safer” 
• “I was anxious and nervous when the automated driving systems were on” 
• “The automated driving system made traveling more enjoyable” 
• “The automated driving system reduced the stress of driving” 
• “The automated driving system took the fun out of driving” 
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Finally, participants rated their attentional state during automated driving by 
indicating their agreement with the following statements: 

• “My mind would tend to wander when the automated driving systems were 
on” 

• “I was able to engage in more activities unrelated to driving when the 
automated driving systems were on” 

• “I was comfortable relinquishing control of the vehicle to the automated 
driving system”  

Intentions to Use and Purchase Automated Vehicles. The final five items measured 
participants’ intentions to use and purchase automated vehicles in the future. 
Participants indicated their agreement with the following statements on 5-point scales 
anchored by 1 = disagree completely and 5 = agree completely: 

• “I would not feel comfortable using automated driving systems on most roads” 
• “If I was tired or distracted, I would rely heavily on automated driving 

systems” 
• “I would utilize the automated driving systems in a vehicle as much as possible 
• “I would not feel comfortable using the automated driving systems in a vehicle 

without monitoring it closely”  

Participants also indicated “What is the likelihood that you would buy automated 
driving systems for your car if you had the funds for them?” on a 5- point scale anchored 
by 1 = definitely would not purchase and 5 = definitely would purchase. 

Results 

Preliminary analyses indicated that there were no gender effects on almost all the 
measures. Because of the small sample size and lack of gender main effects and 
interactions, gender was not included in the reported analyses. 

Bi-Weekly Survey Responses 

Participants completed the bi-weekly surveys at the beginning and end of the 6- to 8-
week driving period and two points of time in between. Linear trend analyses were 
performed to examine the changes in automated driving experiences and attention, and 
evaluations of the automated driving systems over the course of the study (see Table 10). 
The reported analyses were limited to the 20 participants who completed all four of the 
bi-weekly surveys. 

Evaluations of the automation as reflected by participants’ trust in automated 
systems, perceptions of the usefulness of automated systems, and overall evaluations 
increased in favorableness over the course of the study. There were no changes in the 
perceived safety, workings, or frequency of malfunction of the automation. 
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 As their exposure (using week of the study as a proxy) to the vehicle increased, 
participants reported greater agreement that the automated systems reduce the stress of 
driving. There were no changes over time in participants’ reports of sleepiness or anxiety 
while the automation was operating.  

In terms of their attention during automated driving, participants reported 
increasing engagement in activities unrelated to driving while the automation was 
operating and less discomfort about using the automation without monitoring it closely 
over time. Nevertheless, they reported increased focus on the road and driving safely 
with the automation over the 6- to 8-week study period. These were the only linear 
trends that were significant. There were no changes over time in the reported usage of 
the automation. 

Table 10. Responses to the bi-weekly survey across 6- to 8-week driving period 

 Start Week 2 Week 4 End Linear 
Trend 

Evaluations of automation      
How much do you trust the 

automated driving systems? (1 = do 
not trust at all; 5 = trust completely) 

3.25 
(0.64) 

3.45 
(0.76) 

3.50 
(0.61) 

3.75 
(0.55) 

F(1,19) = 6.00, 
p = .02* 

How useful are the automated 
driving systems to you? (1 = not at all 

useful; 5 = highly useful) 

3.55 
(0.89) 

3.85 
(0.81) 

4.00 
(0.80) 

4.10 
(0.79) 

F(1,19) = 5.83, 
p = .03* 

What is your overall evaluation of 
the automated driving systems? 

(1=highly negative; 5=highly positive) 

3.95 
(0.83) 

4.15 
(0.59) 

4.20 
(0.70) 

4.35 
(0.49) 

F(1,19) = 5.41, 
p = .03* 

The automated driving systems 
substantially increase the safeness of 

driving. 

3.60 
(0.75) 

3.75 
(0.79) 

3.65 
(0.81) 

3.80 
(0.77) 

F < 1, 
p = .46 

I am surprised by how well the 
automated driving systems work and 

what they can do. 

3.90 
(0.85) 

3.80 
(0.95) 

3.85 
(0.88) 

4.05 
(0.69) 

F(1,19) = 1.30, 
p = .27 

I am surprised by how often the 
automated driving systems 

malfunction or shut off 
unexpectedly. 

3.15 
(1.18) 

2.85 
(1.04) 

3.15 
(1.04) 

2.95 
(1.10) 

F < 1, 
p = .69 

Automated driving experience       
The automated driving systems 

reduce the stress of driving. 
2.85 

(1.14) 
3.35 

(1.04) 
3.50 

(0.95) 
3.50 

(1.00) 
F(1,19) = 5.48, 

p = .03* 

I get bored and sleepy when the 
automated driving systems are on. 

2.25 
(1.02) 

2.15 
(1.09) 

2.10 
(0.91) 

2.25 
(1.12) 

F < 1, 
p = .93 
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 Start Week 2 Week 4 End Linear 
Trend 

I am anxious and nervous when the 
automated driving systems are on. 

3.15 
(1.04) 

3.00 
(0.97) 

3.05 
(1.19) 

2.70 
(0.98) 

F(1,19) = 1.97 
p = .18 

Attention during automated driving      
I engage in more activities unrelated 
to driving while the car is driving in 

autonomous mode. 

2.60 
(1.10) 

3.00 
(1.21) 

2.85 
(1.14) 

3.25 
(1.16) 

F(1,19) = 6.00 
p = .02* 

I am totally focused on the road and 
driving safely even when the 

automated systems are on. 

3.90 
(0.91) 

3.85 
(1.23) 

4.25 
(0.91) 

4.10 
(0.91) 

F(1,19) = 6.55 
p = .02* 

I tend to allow my thoughts to 
wander while the automated driving 

systems are on. 

3.30 
(1.03) 

3.25 
(0.85) 

3.15 
(1.09) 

3.30 
(1.03) 

F < 1, 
p = .87 

I do not feel comfortable using the 
automated systems in the vehicle 
without monitoring them closely. 

3.70 
(1.17) 

3.40 
(1.50) 

3.10 
(1.59) 

3.30 
(1.30) 

F(1,19) = 6.15 
p = .02* 

Usage of automation      
I do not use the automated systems 

in heavy traffic. 
3.20 

(1.44) 
3.20 

(1.51) 
3.35 

(1.31) 
3.35 

(1.42) 
F < 1, 

p = .49 

I do not use the automated systems 
on hilly or curvy roadways. 

2.90 
(1.33) 

3.25 
(1.29) 

2.90 
(1.17) 

2.70 
(1.22) 

F(1,19) = 1.88 
p = .19 

I utilize the automated driving 
systems in the vehicle as much as 

possible. 

3.95 
(1.15) 

4.25 
(1.16) 

4.05 
(1.15) 

4.10 
(1.07) 

F < 1, 
p = .68 

Notes. Scales anchored by 1 = disagree completely and 5 = agree completely, unless otherwise noted. N = 20.  

Driving Experiences with the Automated Systems 

At the completion of the study, participants conveyed their agreement with a series of 
statements about their automated driving experience, attention during automated 
driving, and usage of the automation. The mean levels of agreement were compared 
using one-sample t-tests against the scale midpoint of 3 to determine whether they 
generally agreed or disagreed with the statements (see Table 11).  

Participants tended to agree that the automated systems made traveling safer. 
They also indicated that the automated systems reduced the stress of driving and made 
traveling more enjoyable, and that they were able to relax when the automated driving 
systems were on. Furthermore, participants reported that the automated systems did not 
make them anxious and nervous, did not make traveling boring, and did not take the fun 
out of driving. 
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Finally, participants appear to attend less to driving when the automation is 
operating. A large proportion of respondents reported that their minds would tend to 
wander during automated driving and they were comfortable relinquishing control of 
the vehicle to the automation. Moreover, there was a marginally significant tendency to 
engage in more secondary activities when the automated systems were operating. 
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Table 11. Experiences with automated driving systems, measured post-study. 

 Percent 
Disagreement 

Percent 
Agreement 

Mean 
(St. Dev) 

Comparison 
with Scale 
Midpoint 

Evaluations of automation 
The automated driving system 

made traveling safer.  10.3% 72.4% 
3.79 

(0.86) 
t(28) = 4.96 

p < .001* 
I was concerned that the 

automated driving systems would 
shut off unexpectedly. 

55.1% 44.8% 
2.59 

(1.50) 
t(28) = 1.49 

p = .15 

Experience of automated driving 
I was able to relax when the 

automated driving systems were 
on.  

17.2% 82.8% 
3.83 

(1.04) 
t(28) = 4.30 

p < .001* 

The automated driving system 
made traveling boring for me. 51.7% 27.6% 

2.59 
(1.09) 

t(28) = 2.05 
p = .05* 

I was anxious and nervous when 
the automated driving systems 

were on.  
51.7% 27.6% 

2.48 
(1.18) 

t(28) = 2.35 
p = .03* 

The automated driving system 
made traveling more enjoyable.  17.2% 62.1% 

3.66 
(1.01) 

t(28) = 3.49 
p = .002* 

The automated driving system 
reduced the stress of driving.  27.6% 58.6% 

3.55 
(1.15) 

t(28) = 2.58 
p = .02* 

The automated driving system took 
the fun out of driving.  51.7% 20.6% 

2.55 
(1.09) 

t(28) = 2.22 
p = .04* 

Attention during automated driving 
My mind would tend to wander 

when the automated driving 
systems were on. 

24.1% 69.0% 
3.48 

(1.02) 
t(28) = 2.54 

p = .02* 

I was able to engage in more 
activities unrelated to driving 

when the automated driving 
systems were on.  

17.2% 62.0% 
3.34 

(1.11) 
t(28) = 1.67 

p = .11 

I was comfortable relinquishing 
control of the vehicle to the 
automated driving system.  

20.6% 69.0% 
3.59 

(1.05) 
t(28) = 3.00 

p = .006* 

Notes. Scales anchored by 1 = disagree completely and 5 = agree completely. N = 29.    
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Intentions to Use and Purchase Automated Driving Systems 

The mean intentions to use and purchase automated driving systems in the future are 
presented in Table 12. Once again, the mean levels of agreement were compared with 
the midpoint of 3 using one-sample t-tests to determine whether participants generally 
agreed or disagreed with the statements. Most participants reported that they would 
utilize the automated systems as much as possible while driving and few conveyed that 
they would not feel comfortable using automated driving systems on most roads. Most 
participants reported that they would purchase automated driving systems for their 
vehicles if they could afford it. Finally, almost 70% of participants reported that they 
monitored the car continuously when the vehicle was in automated mode. This is 
important because the safe operation of Level 2 vehicles requires motorists to take 
control when the automation disengages. 

Table 12. Intentions toward automated driving systems (standard deviation in parentheses below 
means). 

 Percent 
Disagreement 

Percent 
Agreement 

Mean  
(St. Dev.) 

Comparison 
with Scale 
Midpoint 

I would not feel comfortable using 
automated driving systems on 

most roads.  
65.5% 17.2% 

2.31 
(1.20) 

t(28) = 3.10, 
p = .004* 

If I was tired or distracted, I 
would rely heavily on automated 

driving systems.  
31.0% 55.1% 

3.41 
(1.45) 

t(28) = 1.54 
p = .14 

I would utilize the automated 
driving systems in a vehicle as 

much as possible.  
17.2% 75.0% 

3.86 
(1.09) 

t(28) = 4.25 
p < .001* 

I would not feel comfortable using 
the automated driving systems in 

a vehicle without monitoring it 
closely.  

20.7% 68.9% 
3.72 

(1.07) 
t(28) = 3.66 

p = .001* 

If I can afford it, I am going to buy 
or lease a car with automated 
driving systems. (1 = definitely 

would not purchase; 5 = definitely 
would purchase) 

17.2% 72.4% 
3.90 

(1.18) 
t(28) = 4.11 
 p < .001* 

Notes. Scales anchored by 1 = disagree completely and 5 = agree completely, unless otherwise noted. N = 29. 
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Relationship between Pre-Driving Beliefs about Automated Systems and Driving 
Experiences, Attention, and Intentions 

Analyses were performed to explore the impact of pre-existing beliefs and expectations 
on automated driving experiences and attention, and evaluations of the automation (see 
Table 13). It was hypothesized that participants who expressed more positive pre-driving 
attitudes toward automation and more positive beliefs about technology would report 
more favorable automated driving experiences and less attention to the road. The 
correlational analyses focused on pre-driving overall evaluations of automated driving 
systems, pre-driving perceptions of the usefulness of automated systems, trust in 
automated systems, and the propensity to trust in general technology. The patterns of 
correlations that emerged for the evaluations and perceptions of the usefulness of 
automated systems were different from those that were observed for the trust in the 
automation. As a consequence, they are reported separately. 

Participants who believed that the automated systems were useful prior to driving 
perceived that the automated systems tended to make driving safer. Otherwise, pre-
driving evaluations and perceptions of usefulness did not appear to strongly influence 
post-driving evaluations of the automation. As expected, pre-driving beliefs appeared to 
influence the automated driving experience. As the favorableness of their pre-driving 
overall evaluations of automated systems increased, participants expressed less stress 
and anxiety during automated driving and were less apt to report that the automation 
took the fun out of driving. Similarly, as the perceived usefulness of automated systems 
pre-driving increased, the greater the enjoyment of automated driving and the lower the 
anxiety and stress reported. There was also a lower likelihood of reporting that the 
automation took the fun out of driving. 

Pre-driving evaluations of automated systems were marginally significantly 
correlated with mind wandering and secondary task engagement during automated 
driving. Pre-driving perceptions of usefulness were marginally significantly correlated 
with the tendency to engage in secondary activities when the automation was on and 
comfort with relinquishing control of the vehicle to the automated driving systems. 

In contrast, the pre-driving trust in automated systems and the pre-driving 
propensity to trust in general technology did not appear to influence evaluations of the 
automation or automated driving experiences and attention. These two pre-driving 
measures were significantly associated with only one of the eleven items. Note that 
separate correlational analyses for the “faith in general technology” and “trusting 
stance” sub-scales of the Propensity to Trust Technology Scale (McKnight et al., 2011) 
were similarly uncorrelated with evaluations of the automation, and automated driving 
experiences and attention. 
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Table 13. Correlations between pre-driving beliefs about automated systems and the Propensity to 
Trust Technology, and automated driving evaluations, experiences, and attention. 

 Overall 
Evaluation1 Usefulness2 Trust3 

Propensity to 
trust in 
general 

technology 

Evaluations of automation     
The automated driving system made 

traveling safer. 
.30 

p = .12 
.39 

p = .04* 
.31 

p = .10 
−.10 

p = .61 
I was concerned that the automated 

driving systems would shut off 
unexpectedly. 

−.11 
p = .59 

−.02 
p = .91 

−.01 
p = .97 

.06 
p = .76 

Experience of automated driving     
I was able to relax when the 

automated driving systems were on. 
.30 

p = .11 
.27 

p = .15 
.25 

p = .19 
−.20 

p = .10 

The automated driving system made 
traveling boring for me. 

.16 
p = .40 

−.03 
p = .88 

−.12 
p = .53 

−.13 
p = .52 

I was anxious and nervous when the 
automated driving systems were on. 

−.45 
p = .02* 

−.49 
p = .01* 

−.30 
p = .11 

.11 
p = .56 

The automated driving system made 
traveling more enjoyable. 

.34 
p = .07 

.49 
p = .01* 

.28 
p = .14 

−.13 
p = .50 

The automated driving system 
reduced the stress of driving. 

.47 
p = .01* 

.56 
p = .002* 

.26 
p = .18 

−.24 
p = .21 

The automated driving system took 
the fun out of driving. 

−.38 
p < .05* 

−.39 
p = .04* 

−.50 
p = .005* 

−.15 
p = .43 

Attention during automated driving 
My mind would tend to wander 

when the automated driving systems 
were on. 

.32 
p = .09 

.22 
p = .25 

.00 
p = .99 

−.25 
p = .20 

I was able to engage in more 
activities unrelated to driving when 
the automated driving systems were 

on. 

.33 
p = .08 

.35 
p = .06 

.07 
p = .71 

−.08 
p = .67 

I was comfortable relinquishing 
control of the vehicle to the 
automated driving system. 

.30 
p = .11 

.35 
p = .06 

.10 
p = .59 

−.27 
p = .16 

1Pre-driving overall evaluation of automated systems (1=highly negative; 5=highly positive). 
2Pre-driving beliefs about the usefulness of automated systems (1=not at all useful; 5=highly useful).  
3Pre-driving trust in automated systems (1=do not trust at all; 5=trust completely); N = 30. 
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Relation between Pre-Driving Beliefs about Automated Systems and Automated 
Driving Intentions 

As shown in Table 14, the favorableness of pre-driving evaluations and perceptions of 
the usefulness of automated driving systems were associated with stronger intentions to 
use and purchase the automation in the future. Participants who expressed more 
favorable pre-driving evaluations of automated systems conveyed stronger intentions to 
utilize automated systems and rely on them when they were tired or distracted. 
Participants who perceived the automation to be useful expressed stronger intentions to 
utilize automated systems, rely on them when they were tired or distracted, and 
purchase them. In addition, they expressed greater comfort using automated systems on 
most roads. 

In contrast, pre-driving trust in automated systems and the propensity to trust in 
general technology did not appear to influence automated driving intentions. Pre-driving 
trust in automated systems was not significantly correlated with any of the automated 
driving intention measures while the propensity to trust in general technology was 
significantly correlated only with the need to monitor the vehicle closely with the 
automated systems operating. 

Table 14. Correlations between pre-driving beliefs about automated systems and the Propensity to 
Trust Technology, and intentions to use and purchase automated systems 

 Overall 
Evaluation1 Usefulness2 Trust3 

Propensity to 
trust in general 

technology 

I would not feel comfortable using 
automated driving systems on most 

roads. 

−.10 
p = .61 

−.37 
p < .05* 

.02 
p = .92 

−.02 
p = .93 

If I was tired or distracted, I would rely 
heavily on automated driving systems. 

.67 
p < .001* 

.48 
p = .01* 

.21 
p = .26 

−.11 
p = .56 

I would utilize the automated driving 
systems in a vehicle as much as 

possible. 

.65 
p < .001* 

.55 
p = .002* 

.35 
p = .07 

−.10 
p = .60 

I would not feel comfortable using the 
automated driving systems in a vehicle 

without monitoring it closely. 

−.23 
p = .23 

−.49 
p = .01* 

−.03 
p = .90 

−.40 
p = .03* 

What is the likelihood that you would 
buy automated driving systems for your 

car if you had the funds for them?  

.29 
p = .13 

.38 
p < .05* 

.11 
p = .56 

−.33 
p = .08 

1Pre-driving overall evaluation of automated systems (1=highly negative; 5=highly positive). 
2Pre-driving beliefs about the usefulness of automated systems (1=not at all useful; 5=highly useful).  
3Pre-driving trust in automated systems (1=do not trust at all; 5=trust completely); N = 29. 
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Relation Between Automated Driving Experiences and Attention, and Driving 
Intentions 

Correlation analyses were performed to examine the extent to which automated driving 
intentions were associated with participants’ evaluations of the automation, automated 
driving experiences, and attention and activities during automated driving. The analyses 
focused on the extent to which the favorableness of the automated driving experiences 
and behaviors were associated with intentions to utilize and purchase automated 
systems in the future (see Table 15).  

Participants’ intentions to use and purchase automated systems in the future 
appear to have been strongly related to the favorableness of their automated driving 
experiences, perceptions of the automation, and beliefs about the affordances of the 
automated systems. For example, the belief that automated systems make driving safer 
was strongly correlated with the intention to utilize the automated systems as much as 
possible and the likelihood of purchasing a vehicle with automated systems. Purchase 
and usage intentions were similarly stronger when participants believed that the 
automated systems make driving less stressful and traveling more enjoyable.  

Participants expressed stronger intentions to use automated systems in the future 
when they let their minds wander during automated driving and were able to relinquish 
control of the vehicle. There also was a marginally significant tendency for usage 
intentions to be stronger when participants engaged in more secondary activities during 
automated driving. Participants also expressed a greater likelihood of purchasing 
automated systems if they felt comfortable relinquishing control of the vehicle to the 
automation. 
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Table 15. Correlations between automated driving evaluations, experiences, and attention, and 
intentions to use and purchase automated systems. 

 Intention 
to Use1 

Likelihood to 
Purchase2 

Evaluations of automation   

The automated driving system made traveling safer. 
.50* 

p = .006* 
.54 

p = .002* 

I was concerned that the automated driving systems would shut 
off unexpectedly. 

-.34 
p = .07 

-.49 
p = .007* 

Experience of automated driving   

I was able to relax when the automated driving systems were on. 
.67 

p < .001* 
.63 

p < .001* 

The automated driving system made traveling boring for me. 
-.11 

p = .57 
-.04 

p = .86 

I was anxious and nervous when the automated driving systems 
were on. 

-.75 
p < .001* 

-.66 
p < .001* 

The automated driving system made traveling more enjoyable. 
.70 

p < .001* 
.63 

p < .001* 

The automated driving system reduced the stress of driving. 
.74 

p < .001* 
.70 

p < .001* 

The automated driving system took the fun out of driving. 
-.29 

p = .12 
-.26 

p = .17 
Attention during automated driving   

My mind would tend to wander when the automated driving 
systems were on. 

.38 
p = .04* 

.34 
p = .07 

I was able to engage in more activities unrelated to driving when 
the automated driving systems were on. 

.31 
p = .11 

.30 
p = .11 

I was comfortable relinquishing control of the vehicle to the 
automated driving system. 

.63 
p < .001* 

.74 
p < .001* 

1I would utilize the automated driving systems in a vehicle as much as possible.  
2What is the likelihood that you would buy automated driving systems for your car if you had the funds for 
them? (1 = definitely would not purchase; 5 = definitely would purchase); N = 30. 

Discussion 

The study provides compelling evidence that experience with automated systems had a 
positive impact on drivers’ perceptions and attitudes. Following several weeks of 
operating a Level 2 automation vehicle, participants reported that the automated 
systems reduce the stress of driving and make traveling more enjoyable. They further 
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indicated that they were less anxious and nervous, and able to relax more during 
automated driving. Finally, most participants conveyed that the automation did not take 
the fun out of driving or make traveling boring. 

The results provide strong support for previous findings (Cooley et al., 2022), 
which were based on a single automated drive. The current study goes beyond this 
previous work by suggesting that the effects of automation on the driving experience 
increase over time. The tendency for the automation to reduce the stress of driving was 
found to improve with greater familiarity with the technology. Moreover, participants 
felt increasingly comfortable driving with the automation without monitoring it closely. 

Unlike the previous on-road study (Cooley et al., 2022), participants reported that 
their attention and activities during driving were affected by the automation. Most were 
reportedly comfortable relinquishing control of the vehicle to the automated systems. 
Following previous research (e.g., Lin et al, 2018), they also tended to report engaging in 
more activities unrelated to driving when the automated systems were operating. This 
study contributes to the literature on the attention and behavior of motorists by 
providing evidence that drivers are more apt to allow their minds to wander during 
automated driving. The study also showed that engagement in secondary activities 
during automated travel and the willingness to relinquish control of the vehicle becomes 
greater over time as familiarity with the automation increases.  

The current study differed from most prior research in that participants’ 
assessments of the experience of automated driving were based on actual on-road 
driving rather than simulator driving or traveling as a passenger. Prior studies of the 
automated driving experience have also been limited by the usage of potentially biased 
samples such as owners and purchasers of the technology. These concerns were 
substantially diminished in the current study by recruiting motorists who had never 
driven automated vehicles previously. 

The favorableness of the automated driving experience and perceptions of the 
affordances of automated driving (i.e., what automation allows drivers to do) are 
important because they affect the usage and purchase of automated systems, and, hence, 
safety. Following previous research, participants expressed a strong willingness to use 
the automated systems in the future and purchase automated systems if they were 
affordable. As expected, the favorableness of driving experiences was associated with 
intentions to use the automation in different driving contexts and intentions to acquire 
automated systems. Drivers who had more positive experiences with the automation and 
used the automation to do things other than driving developed stronger intentions to use 
and purchase automated systems in the future.  

Research has shown that people tend to gather and interpret information in a 
manner that is consistent with their beliefs and hypotheses (e.g., Von Hippel & Tyre, 
1995). Consequently, their experiences and observations tend to be in line with their 
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expectations. In the current study, the favorableness of experiences with the automated 
systems and future intentions were strongly correlated with pre-existing beliefs about 
the automation. For example, participants who believed that automated systems are 
useful prior to using the technology reported that the automation tended to increase the 
enjoyment and reduce the stress of driving. They also expressed stronger intentions to 
use and purchase automated driving systems in the future. 

Unexpectedly, trust in automated systems and the propensity to trust in general 
technology did not appear to have influenced evaluations of the automation, automated 
driving experiences and attention, and usage and purchase intentions. This finding was 
very surprising because recent work on driving automation has assumed that trust is 
vital to the adoption and usage of the technology (e.g., Beggiato et al., 2015; Walker et al., 
2018). Future research will need to closely examine the impact of trust in automated 
systems on driving behavior and consumer purchase decisions. 

The survey findings are paralleled by the analyses of the videotaped driving 
behaviors of participants reported in Part 2. In line with the self-reports of participants, 
the behavioral coding and analysis found that secondary task engagement tended to be 
slightly higher during automated driving than manual driving (using a naturalistic 
control) and that secondary activities tended to increase as familiarity with the 
automation increased. Moreover, the behavioral analysis revealed that there were more 
system warnings about driver inattention as participants became more experienced with 
the Level 2 vehicle automation. This parallels participants’ reports that they sometimes 
allowed their minds to wander while using the automated systems and became 
increasingly comfortable over time using the automation without monitoring it closely. 

Some of the current findings may suggest that automated systems increase unsafe 
behavior by motorists. However, the analyses of the videotaped driving behaviors of our 
participants reported in Part 2 and other facets of the survey results suggest that most 
motorists are cognizant of the risks of automated driving and discreet in their usage of 
the automation. Almost 70% of our participants reported that they would not feel 
comfortable using the automated driving systems in a vehicle without monitoring them 
closely. In addition, as participants gained greater familiarity with the automation, they 
increasingly reported that they focus on the road and driving safely even when the 
automated systems are on. Finally, the majority of our participants reported that they 
would not use the automation in heavy traffic. Moreover, the behavioral analysis 
showed that participants were less likely to use the automation when driving demands 
were high, that is, when adverse weather, heavy traffic, and other potential hazards 
were present. Thus, while drivers may be less attentive when automated systems are 
operating, they are less likely to use the automation in roadway conditions in which the 
risk of driving are elevated. 
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GENERAL SUMMARY  

To address critical research gaps in our understanding of vehicle automation, the 
current study recruited participants who had no prior experience with automated 
vehicle technology and examined their behaviors and interactions with the system over 
time. The study employed a hybrid research design that combined experimental, 
naturalistic, and survey components in a longitudinal design where drivers gained 
experience and familiarity with the vehicle technology over the course of several weeks. 
The design allowed for a comprehensive assessment of how drivers interact with and 
adapt to vehicle automation systems in real-world scenarios. By examining factors such 
as changes in system use over time, driver fatigue, and secondary task engagement, this 
study aimed to provide valuable insights into the safety concerns associated with 
automation use. This section highlights selected key outcomes gleaned from the different 
components of the study (described previously in the Parts 1, 2 and 3 above). 

Experimental Study 

• Results from the behavioral indices of workload (i.e., the Detection Response 
Task) suggested that driving under Level 2 automation was associated with an 
increase in driver workload compared to conditions without automation. That 
is, drivers in the experimental study may pay more attention to the driving 
environment under partial automation compared to manual mode.  

• The experience of driving a vehicle for a period of 6 to 8 weeks impacted 
driver workload differentially across road environment, suggesting that 
practice with vehicle automation decreases driver workload while using the 
system over time, at least when driving on roads with relatively low demand. 
That is, after a 6-week familiarization period, there was a significant decrease 
in attention paid to the driving task under partial automation—at least in the 
simpler driving environment.  

• The physiological measures of workload were less sensitive to discriminating 
differences in workload and engagement between driving conditions and did 
not show the same patterns as the behavioral indices.  

Naturalistic Study 

• Drivers used Level 2 vehicle automation more than 70% of the time, an 
amount that stayed relatively consistent over the 6- to 8-week observation 
period. Drivers were less likely to use vehicle automation when driving 
demands were higher. 

• Over 6- to 8-week period of automation use, there was an increase in the 
frequency of system warnings as drivers become more experienced with the 
Level 2 vehicle automation, suggesting that drivers were becoming 
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increasingly comfortable with the automation and exhibited a tendency 
toward a more relaxed automation monitoring strategy over time.  

• As drivers grow more familiar with the system, they are more likely to engage 
in secondary tasks over time; however, the lack of interaction between 
secondary task engagement and Condition suggests that these behaviors may 
not be a direct consequence of over-reliance on the automation system. 
Instead, they might reflect a general trend of drivers becoming more 
comfortable with multitasking in these specific research vehicles over time, 
regardless of automation capabilities. 

• The Experimental Control condition yielded a behavioral profile that was 
markedly different from that observed in the Naturalistic Control condition. In 
most cases, behavior in the Experimental Control condition fell in between the 
Automation-L2 and Naturalistic Control conditions (e.g., fatigue, the secondary 
task aggregate, radio listening, and text messaging).  

o One plausible explanation for differences between the benchmarks is 
that driving demand may mediate the relationship between automation 
use and secondary task engagements such that drivers may be less 
likely to use automation and less likely to engage in secondary tasks 
when driving demands are higher. 

Survey Study 

• Experience with automated systems had a positive impact on drivers’ 
perceptions and attitudes, including reduced stress and increased enjoyment.  

• As their experience grew, drivers felt increasingly willing to relinquish control 
of the vehicle and comfortable driving with the automation without 
monitoring it closely—an outcome that aligns with the naturalistic study 
where more system warnings were observed as participants became more 
experienced with the Level 2 vehicle automation.  

• Drivers were also more likely to report engaging in more activities unrelated 
to driving when the automated systems were operating as their experience 
with the systems grew—in line with outcomes from the naturalistic study. 

• Unexpectedly, trust in automated systems did not appear to have influenced 
evaluations of the automation, automated driving experiences and attention, 
and usage and purchase intentions.  

• While drivers may have reported being less attentive when automated systems 
are operating, they were also less likely to report using the automation in 
roadway conditions in which the risk of driving were elevated. 

 

  



72 

REFERENCES 

ABC (2023). Woman thought Tesla driver caught sleeping at the wheel was having 
medical issue [Video]. Available at: 
https://www.youtube.com/watch?v=kQSA25RGjN4 

Abe, G., & Richardson, J. (2004). The effect of alarm timing on driver behaviour: An 
investigation of differences in driver trust and response to alarms according to 
alarm timing. Transportation Research Part F: Traffic Psychology and 
Behaviour, 7(4–5), 307–322. https://doi.org/10.1016/j.trf.2004.09.008 

Ahlström, C., Zemblys, R., Jansson, H., Forsberg, C., Karlsson, J., & Anund, A. (2021). Effects 
of partially automated driving on the development of driver sleepiness. Accident 
Analysis & Prevention, 153, 106058. https://doi.org/10.1016/j.aap.2021.106058 

Alessandrini, A., Campagna, A., Delle Site, P., Filippi, F., & Persia, L. (2015). Automated 
vehicles and the rethinking of mobility and cities. Transportation Research 
Procedia, 5, 145–160. https://doi.org/10.1016/j.trpro.2015.01.002 

Arefnezhad, S., Eichberger, A., & Koglbauer, I. V. (2022). Effects of automation and fatigue 
on drivers from various age groups. Safety, 8(2), 30. 
https://doi.org/10.3390/safety8020030 

Banks, V. A., Eriksson, A., O'Donoghue, J., & Stanton, N. A. (2018). Is partially automated 
driving a bad idea? Observations from an on-road study. Applied Ergonomics, 68, 
138–145. https://doi.org/10.1016/j.apergo.2017.11.010 

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models 
using lme4. Journal of Statistical Software, 67, 1–48. 
https://doi.org/10.18637/jss.v067.i01 

Beggiato, M., & Krems, J. F. (2013). The evolution of mental model, trust and acceptance of 
adaptive cruise control in relation to initial information. Transportation Research 
Part F: Traffic Psychology and Behaviour, 18, 47–57. 
https://doi.org/10.1016/j.trf.2012.12.006 

Beggiato, M., Pereira, M., Petzoldt, T., & Krems, J. (2015). Learning and development of 
trust, acceptance and the mental model of ACC. A longitudinal on-road 
study. Transportation Research Part F: Traffic Psychology and Behaviour, 35, 75–84. 
https://doi.org/10.1016/j.trf.2015.10.005 

Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., & Babiloni, F. (2014). Measuring 
neurophysiological signals in aircraft pilots and car drivers for the assessment of 
mental workload, fatigue and drowsiness. Neuroscience & Biobehavioral Reviews, 
44, 58–75. https://doi.org/10.1016/j.neubiorev.2012.10.003  



73 

Carriere, J. S., Seli, P., & Smilek, D. (2013). Wandering in both mind and body: Individual 
differences in mind wandering and inattention predict fidgeting. Canadian 
Journal of Experimental Psychology, 67(1), 19. https://doi.org/10.1037/a0031438 

Carsten, O., Kircher, K., & Jamson, S. (2013). Vehicle-based studies of driving in the real 
world: The hard truth? Accident Analysis & Prevention, 58, 162–174. 
https://doi.org/10.1016/j.aap.2013.06.006 

Carsten, O., Lai, F. C., Barnard, Y., Jamson, A. H., & Merat, N. (2012). Control task 
substitution in semiautomated driving: Does it matter what aspects are 
automated? Human Factors, 54(5), 747–761. 
https://doi.org/10.1177/0018720812460246  

Casner, S. M., Hutchins, E. L., & Norman, D. (2016). The challenges of partially automated 
driving. Communications of the ACM, 59(5), 70–77. https://doi.org/10.1145/2830565  

Castro, S. C., Strayer, D. L., Matzke, D., & Heathcote, A. (2019). Cognitive workload 
measurement and modeling under divided attention. Journal of Experimental 
Psychology: Human Perception and Performance, 45, 826–839. 
https://doi.org/10.1037/xhp0000638 

Chikhi, S., Matton, N., & Blanchet, S. (2022). EEG power spectral measures of cognitive 
workload: A meta‐analysis. Psychophysiology, 59(6), e14009. 
https://doi.org/10.1111/psyp.14009  

Cohen, M. X. (2014). Analyzing Neural Time Series Data: Theory and Practice. MIT press. 

Cooley, E. H., Sanbonmatsu, D. M., Strayer, D. L., White, P. H., & Cooper, J. M. (2022). On-
road vehicle study of the experience of automated driving. Transportation 
Research Part F: Traffic Psychology and Behaviour, 87, 444–453. 
https://doi.org/10.1016/j.trf.2022.04.014 

Cooper, J. M., Castro, S. C., & Strayer, D. L. (2016). Extending the detection response task to 
simultaneously measure cognitive and visual task demands. In Proceedings of the 
Human Factors and Ergonomics Society Annual Meeting, 60(1), 1962–1966. Sage CA: 
Los Angeles, CA: SAGE Publications. https://doi.org/10.1177/1541931213601447  

De Winter, J. C., Happee, R., Martens, M. H., & Stanton, N. A. (2014). Effects of adaptive 
cruise control and highly automated driving on workload and situation 
awareness: A review of the empirical evidence. Transportation Research Part F: 
Traffic Psychology and Behaviour, 27, 196–217. 
https://doi.org/10.1016/j.trf.2014.06.016  

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-
trial EEG dynamics including independent component analysis. Journal of 
Neuroscience Methods, 134, 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009  

Desmond, P. A., & Hancock, P. A. (2000). Active and passive fatigue states. In Stress, 
Workload, and Fatigue (pp. 455–465). CRC Press. 



74 

Dingus, T. A., Guo, F., Lee, S., Antin, J. F., Perez, M., Buchanan-King, M., & Hankey, J. 
(2016). Driver crash risk factors and prevalence evaluation using naturalistic 
driving data. Proceedings of the National Academy of Sciences, 113(10), 2636–2641. 
https://doi.org/10.1073/pnas.1513271113 

Dufour, A. (2014). Driving assistance technologies and vigilance: Impact of speed limiters 
and cruise control on drivers’ vigilance. Seminar on the Impact of Distracted 
Driving and Sleepiness on Road Safety, April. Paris La Défense. 

Dunn, N. J., Dingus, T. A., Soccolich, S., & Horrey, W. J. (2021). Investigating the impact of 
driving automation systems on distracted driving behaviors. Accident Analysis & 
Prevention, 156, 106152. https://doi.org/10.1016/j.aap.2021.106152 

Dunn, N., Dingus, T.A., & Soccolich, S. (2019). Understanding the Impact of Technology: Do 
Advanced Driver Assistance and Semi-Automated Vehicle Systems Lead to Improper 
Driving Behavior? (Technical Report). Washington, D.C.: AAA Foundation for 
Traffic Safety. 

Eenink, R., Barnard, Y., Baumann, M., Augros, X., & Utesch, F. (2014). UDRIVE: the 
European naturalistic driving study. In Proceedings of Transport Research Arena. 
IFSTTAR. 

Eichelberger, A. H., & McCartt, A. T. (2016). Toyota drivers' experiences with dynamic 
radar cruise control, pre-collision system, and lane-keeping assist. Journal of 
Safety Research, 56, 67–73. https://doi.org/10.1016/j.jsr.2015.12.002 

Endsley, M. R. (2017). Autonomous driving systems: A preliminary naturalistic study of 
the Tesla Model S. Journal of Cognitive Engineering and Decision Making, 11(3), 
225–238. https://doi.org/10.1177/1555343417695197 

Endsley, M. R., & Kiris, E. O. (1995). The out-of-the-loop performance problem and level of 
control in automation. Human Factors, 37(2), 381–394. 
https://doi.org/10.1518/001872095779064555  

Fairclough, S. H., Venables, L., & Tattersall, A. (2005). The influence of task demand and 
learning on the psychophysiological response. International Journal of 
Psychophysiology, 56(2), 171–184. https://doi.org/10.1016/j.ijpsycho.2004.11.003  

Fan, C., Hu, J., Huang, S., Peng, Y., & Kwong, S. (2022). EEG-TNet: An end-to-end brain 
computer interface framework for mental workload estimation. Frontiers in 
Neuroscience, 16. https://doi.org/10.3389/fnins.2022.869522 

Feldhütter, A., Hecht, T., Kalb, L., & Bengler K. (2019). Effect of prolonged periods of 
conditionally automated driving on the development of fatigue: With and without 
non-driving-related activities. Cognition, Technology & Work, 21, 33–40. 
https://doi.org/10.1007/s10111-018-0524-9 



75 

Fisher, D. L., Lohrenz, M., Moore, D., Nadler, E. D., & Pollard, J. K. (2016). Humans and 
intelligent vehicles: The hope, the help, and the harm. IEEE Transactions on 
Intelligent Vehicles, 1(1), 56–67. https://doi.org/10.1109/TIV.2016.2555626  

Foxe, J. J., & Snyder, A. C. (2011). The role of alpha-band brain oscillations as a sensory 
suppression mechanism during selective attention. Frontiers in Psychology, 2, 154. 
https://doi.org/10.3389/fpsyg.2011.00154  

Friard, O., & Gamba, M. (2016). BORIS: A free, versatile open‐source event‐logging 
software for video/audio coding and live observations. Methods in Ecology and 
Evolution, 7(11), 1325–1330. https://doi.org/10.1111/2041-210X.12584 

Fridman, L., Brown, D. E., Glazer, M., Angell, W., Dodd, S., Jenik, B., ... & Reimer, B. (2019). 
MIT advanced vehicle technology study: Large-scale naturalistic driving study of 
driver behavior and interaction with automation. IEEE Access, 7, 102021–102038. 
https://doi.org/10.48550/arXiv.1711.06976  

Fridman, L., Brown, D. E., Glazer, M., Angell, W., Dodd, S., Jenik, B., ... & Reimer, B. (2017). 
MIT autonomous vehicle technology study: Large-scale deep learning based 
analysis of driver behavior and interaction with automation. arXiv preprint 
arXiv:1711.06976, 1. 

Gaspar, J., & Carney, C. (2019). The effect of partial automation on driver attention: A 
naturalistic driving study. Human Factors, 61(8), 1261–1276. 
https://doi.org/10.1177/0018720819836310  

Gevins, A., & Smith, M. E. (2003). Neurophysiological measures of cognitive workload 
during human-computer interaction. Theoretical Issues in Ergonomics Science, 
4(1–2), 113–131. https://doi.org/10.1080/14639220210159717  

Gibson, T. (2015). Virginia's Smart Road: Where researchers make the extreme 
weather. Weatherwise, 68(4), 20–27. 

Goldman, R. I., Stern, J. M., Engel Jr, J., & Cohen, M. S. (2002). Simultaneous EEG and fMRI 
of the alpha rhythm. Neuroreport, 13(18), 2487–2492. 
https://doi.org/10.1097/01.wnr.0000047685.08940.d0  

Gratton, G., Coles, M. G., & Donchin, E. (1983). A new method for off-line removal of 
ocular artifact. Electroencephalography and Clinical Neurophysiology, 55, 468–484. 
https://doi.org/10.1016/0013-4694(83)90135-9  

Greenlee, E. T., DeLucia, P. R., & Newton, D. C. (2018). Driver vigilance in automated 
vehicles: Hazard detection failures are a matter of time. Human Factors, 60(4), 
465–476. https://doi.org/10.1177/0018720818761711  

Hasan, A. S., Patel, D., Alfaris, R., & Jalayer, M. (2022). Identifying distracted-driving 
events from on-road observations using a moving vehicle: A case study in New 
Jersey. Accident Analysis & Prevention, 177, 106827. 



76 

Hartwich, F., Beggiato, M., & Krems, J. F. (2018). Driving comfort, enjoyment and 
acceptance of automated driving–effects of drivers’ age and driving style 
familiarity. Ergonomics, 61(8), 1017–1032. 
https://doi.org/10.1080/00140139.2018.1441448 

Hatfield, N., Yamani, Y., Palmer, D. B., Yahoodik, S., Vasquez, V., Horrey, W. J., & Samuel, 
S. (2019). Analysis of visual scanning patterns comparing drivers of simulated L2 
and L0 systems. Transportation Research Record, 2673(10), 755–761. 
https://doi.org/10.1177/0361198119852339  

He, D., & Donmez, B. (2019). Influence of driving experience on distraction engagement 
in automated vehicles. Transportation Research Record, 2673(9), 142–151. 
https://doi.org/10.1177/0361198119843476 

Huisingh, C., Griffin, R., & McGwin Jr, G. (2015). The prevalence of distraction among 
passenger vehicle drivers: a roadside observational approach. Traffic Injury 
Prevention, 16(2), 140–146. https://doi.org/10.1080/15389588.2014.916797 

ISO 17488 (2016) Road vehicles — Transport information and control systems — 
Detection-response task (DRT) for assessing attentional effects of cognitive load in 
driving. Retrieved from: https://www.iso.org/standard/59887.html  

Jasper, H. H. (1958). The ten-twenty electrode system of the International Federation. 
Electroencephalography and Clinical Neurophysiology, 10, 370–375. 

Körber, M., Baseler, E., & Bengler, K. (2018). Introduction matters: Manipulating trust in 
automation and reliance in automated driving. Applied Ergonomics, 66, 18–31. 
https://doi.org/10.1016/j.apergo.2017.07.006 

Kuznetsova, A., Brockhoff, P. B., Christensen, R. H. B. (2017). lmerTest package: Tests in 
linear mixed effects models. Journal of Statistical Software, 82(13), 1–26. 
https://doi.org/10.18637/jss.v082.i13 

Large, D. R., Harvey, C., Burnett, G., Merenda, C., Leong, S., & Gabbard, J. (2017). Exploring 
the relationship between false alarms and driver acceptance of a pedestrian alert 
system during simulated driving. Road Safety and Simulation Conference.  

Larsson, A. F. (2012). Driver usage and understanding of adaptive cruise control. Applied 
Ergonomics, 43(3), 501–506. https://doi.org/10.1016/j.apergo.2011.08.005 

Lin, R., Ma, L., & Zhang, W. (2018). An interview study exploring Tesla drivers' 
behavioural adaptation. Applied Ergonomics, 72, 37–47. 
https://doi.org/10.1016/j.apergo.2018.04.006 

Liu, P., Jiang, Z., Li, T., Wang, G., Wang, R., & Xu, Z. (2021). User experience and usability 
when the automated driving system fails: Findings from a field 
experiment. Accident Analysis & Prevention, 161, 106383. 
https://doi.org/10.1016/j.aap.2021.106383 

https://www.iso.org/standard/59887.html


77 

Lohani, M., Cooper, J. M., Erickson, G. G., Simmons, T. G., McDonnell, A. S., Carriero, A. E., 
Crabtree, K.W., & Strayer, D. L. (2021). No difference in arousal or cognitive 
demands between manual and partially automated driving: A multi-method on-
road study. Frontiers in Neuroscience, 627. 
https://doi.org/10.3389/fnins.2021.577418 

Lohani, M., Cooper, J. M., Erickson, G. G., Simmons, T. G., McDonnell, A. S., Carriero, A. E., 
... & Strayer, D. L. (2020). Driver arousal and workload under partial vehicle 
automation: A pilot study. Proceedings of the Human Factors and Ergonomics 
Society Annual Meeting, 64(1), 1955–1959. 
https://doi.org/10.1177/1071181320641471  

Lohani, M., Payne, B. R., & Strayer, D. L. (2019). A review of psychophysiological 
measures to assess cognitive states in real-world driving. Frontiers in Human 
Neuroscience, 13, 57. https://doi.org/10.3389/fnhum.2019.00057  

Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: An open-source toolbox for the analysis 
of event-related potentials. Frontiers in Human Neuroscience, 8, 213. 
https://doi.org/10.3389/fnhum.2014.00213  

Louw, T., Kountouriotis, G., Carsten, O., & Merat, N. (2015). Driver inattention during 
vehicle automation: How does driver engagement affect resumption of control?. 
In 4th International Conference on Driver Distraction and Inattention (DDI2015), 
Sydney. ARRB Group. 

Lu, K., Karlsson, J., Dahlman, A. S., Sjöqvist, B. A., & Candefjord, S. (2021). Detecting driver 
sleepiness using consumer wearable devices in manual and partial automated 
real-road driving. IEEE Transactions on Intelligent Transportation Systems, 23(5), 
4801–4810. https://doi.org/10.1109/TITS.2021.3127944 

Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique. MIT Press. 

Makridis, M., Mattas, K., Ciuffo, B., Raposo, M. A., Toledo, T., & Thiel, C. (2018). Connected 
and automated vehicles on a freeway scenario. Effect on traffic congestion and 
network capacity. 7th Transport Research Arena, 13. 

Matthews, G., Neubauer, C., Saxby, D. J., Wohleber, R. W., & Lin, J. (2019). Dangerous 
intersections? A review of studies of fatigue and distraction in the automated 
vehicle. Accident Analysis & Prevention, 126, 85–94. 
https://doi.org/10.1016/j.aap.2018.04.004 

McDonald, A., Carney, C., & McGehee, D. V. (2018). Vehicle Owners' Experiences with and 
Reactions to Advanced Driver Assistance Systems (Technical Report). Washington, 
D.C.: AAA Foundation for Traffic Safety. 

McDonnell, A. S., Simmons, T. G., Erickson, G. G., Lohani, M., Cooper, J. M., & Strayer, D. L. 
(2021). This is your brain on Autopilot: Neural indices of driver workload and 
engagement during partial vehicle automation. Human Factors, 
00187208211039091. https://doi.org/10.1177/00187208211039091  



78 

McKnight, D. H., Carter, M., Thatcher, J. B., & Clay, P. F. (2011). Trust in a specific 
technology: An investigation of its components and measures. ACM Transactions 
on Management Information Systems (TMIS), 2(2), 1–25. 
https://doi.org/10.1145/1985347.1985353 

McKnight, D. H., Choudhury, V., & Kacmar, C. (2002). Developing and validating trust 
measures for e-commerce: An integrative typology. Information Systems 
Research, 13(3), 334–359. https://doi.org/10.1287/isre.13.3.334.81 

Mehler, B., Reimer, B., & Dusek, J. A. (2011). MIT AgeLab Delayed Digit Recall Task (n-
back). Cambridge, MA: Massachusetts Institute of Technology. 

Merat, N., Jamson, A. H., Lai, F. C., Daly, M., & Carsten, O. M. (2014). Transition to manual: 
Driver behaviour when resuming control from a highly automated 
vehicle. Transportation Research Part F: Traffic Psychology and Behaviour, 27, 274–
282. https://doi.org/10.1016/j.trf.2014.09.005 

Morales-Alvarez, W., Sipele, O., Léberon, R., Tadjine, H. H., & Olaverri-Monreal, C. (2020). 
Automated driving: A literature review of the take over request in conditional 
automation. Electronics, 9(12), 2087. https://doi.org/10.3390/electronics9122087 

Musk, E. (2021). Generalized self-driving is a hard problem, as it requires solving a large 
part of real-world AI. […]. Nothing has more degrees of freedom than reality. 
[Tweet]. https://twitter.com/elonmusk/status/1411280212470366213 

National Highway Traffic Safety Administration (2017). Automated Driving Systems 2.0: A 
Vision for Safety. Washington, D.C.: U.S. Department of Transportation.  

National Highway Traffic Safety Administration (2021). Driver Electronic Device Use in 
2021 (DOT HS 813 357). Washington, D.C.: National Highway Traffic Safety 
Administration.  

Naujoks, F., Purucker, C., & Neukum, A. (2016). Secondary task engagement and vehicle 
automation–Comparing the effects of different automation levels in an on-road 
experiment. Transportation Research Part F: Traffic Psychology and Behaviour, 38, 
67–82. https://doi.org/10.1016/j.trf.2016.01.011 

Neale, V. L., Dingus, T. A., Klauer, S. G., Sudweeks, J., & Goodman, M. (2005). An overview 
of the 100-car naturalistic study and findings. National Highway Traffic Safety 
Administration, Paper, 5, 0400. 

Nilsson, E. J., Aust, M. L., Engström, J., Svanberg, B., & Lindén, P. (2018). Effects of 
cognitive load on response time in an unexpected lead vehicle braking scenario 
and the detection response task (DRT). Transportation Research Part F: Traffic 
Psychology and Behaviour, 59, 463–474. https://doi.org/10.1016/j.trf.2018.09.026  

Palada, H., Neal, A., Strayer, D., Ballard, T., & Heathcote, A. (2019). Using response time 
modeling to understand the sources of dual-task interference in a dynamic 

https://twitter.com/elonmusk/status/1411280212470366213


79 

environment. Journal of Experimental Psychology: Human Perception and 
Performance, 45, 1331–1345. https://doi.org/10.1037/xhp0000672 

Parasuraman, R., & Riley, V. (1997). Humans and automation: Use, misuse, disuse, 
abuse. Human Factors, 39(2), 230–253. https://doi.org/10.1518/001872097778543886 

Payre, W., Cestac, J., & Delhomme, P. (2016). Fully automated driving: Impact of trust and 
practice on manual control recovery. Human Factors, 58(2), 229–241. 
https://doi.org/10.1177/0018720815612319 

Peng, Y., Xu, Q., Lin, S., Wang, X., Xiang, G., Huang, S., ... & Fan, C. (2022). The application 
of electroencephalogram in driving safety: Current status and future prospects. 
Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.919695  

Puma, S., Matton, N., Paubel, P. V., Raufaste, É., & El-Yagoubi, R. (2018). Using theta and 
alpha band power to assess cognitive workload in multitasking environments. 
International Journal of Psychophysiology, 123, 111–120. 
https://doi.org/10.1016/j.ijpsycho.2017.10.004  

R Core Team (2022). R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-
project.org/ 

Reagan, I. J., Teoh, E. R., Cicchino, J. B., Gershon, P., Reimer, B., Mehler, B., & Seppelt, B. 
(2021). Disengagement from driving when using automation during a 4-week field 
trial. Transportation Research Part F: Traffic Psychology and Behaviour, 82, 400–
411. 

Saad, F. (2004). Behavioural adaptations to new driver support systems: Some critical 
issues. 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE 
Cat. No. 04CH37583), 1, 288–293. https://doi.org/10.1109/ICSMC.2004.1398312 

Sanbonmatsu, D. M., Posavac, S. S., Kardes, F. R., & Mantel, S. P. (1998). Selective 
hypothesis testing. Psychonomic Bulletin & Review, 5, 197–220. 
https://doi.org/10.3758/BF03212944 

Sanbonmatsu, D. M., Strayer, D. L., Medeiros-Ward, N., & Watson, J. M. (2013). Who multi-
tasks and why? Multi-tasking ability, perceived multi-tasking ability, impulsivity, 
and sensation seeking. PloS One, 8(1), e54402. 
https://doi.org/10.1371/journal.pone.0054402  

Sanbonmatsu, D. M., Strayer, D. L., Yu, Z., Biondi, F., & Cooper, J. M. (2018). Cognitive 
underpinnings of beliefs and confidence in beliefs about fully automated 
vehicles. Transportation Research Part F: Traffic Psychology and Behaviour, 55, 
114–122. https://doi.org/10.1016/j.trf.2018.02.029 

Schömig, N., Hargutt, V., Neukum, A., Petermann-Stock, I., & Othersen, I. (2015). The 
interaction between highly automated driving and the development of 

https://doi.org/10.3389/fpsyg.2022.919695


80 

drowsiness. Procedia Manufacturing, 3, 6652–6659. 
https://doi.org/10.1016/j.promfg.2015.11.005 

Schroeter, R., Oxtoby, J., Johnson, D., & Steinberger, F. (2015). Exploring boredom 
proneness as a predictor of mobile phone use in the CAR. Proceedings of the 
Annual Meeting of the Australian Special Interest Group for Computer Human 
Interaction, 465–473. https://doi.org/10.1145/2838739.2838783 

Sener, I. N., & Zmud, J. (2019). Chipping away at uncertainty: intent to use self-driving 
vehicles and the role of ride-hailing. Transportation Planning and 
Technology, 42(7), 645–661. https://doi.org/10.1080/03081060.2019.1650423 

Society for Automotive Engineering (2021). Taxonomy and Definitions for Terms Related 
to Driving Automation Systems (Standard No. J3016). Warrendale, PA: SAE 
International. https://www.sae.org/standards/content/j3016_202104/ 

Stapel, J., Happee, R., Christoph, M., van Nes, N., & Martens, M. (2022). Exploring the 
usage of supervised driving automation in naturalistic conditions. Transportation 
Research Part F: Traffic Psychology and Behaviour, 90, 397–411. 
https://doi.org/10.1016/j.trf.2022.08.013 

Strayer, D. L., & Johnston, W. A. (2001). Driven to distraction: Dual-task studies of 
simulated driving and conversing on a cellular telephone. Psychological Science, 
12(6), 462–466. https://doi.org/10.1111/1467-9280.00386  

Strayer, D. L., Castro, S. C., Turrill, J., & Cooper, J. M. (2022). The persistence of distraction: 
The hidden costs of intermittent multitasking. Journal of Experimental Psychology: 
Applied, 28(2), 262–282. https://doi.org/10.1037/xap0000388  

Strayer, D. L., Cooper, J. M., Goethe, R. M., McCarty, M. M., Getty, D., & Biondi, F. (2017). 
Visual and Cognitive Demands of Using In-Vehicle Infotainment Systems (Technical 
Report). Washington, D.C.: AAA Foundation for Traffic Safety. 

Strayer, D. L., Cooper, J. M., Goethe, R. M., McCarty, M. M., Getty, D. J., & Biondi, F. (2019). 
Assessing the visual and cognitive demands of in-vehicle information systems. 
Cognitive Research: Principles and Implications, 4(1), 1–22. 
https://doi.org/10.1186/s41235-019-0166-3  

Strayer, D. L., Cooper, J. M., Sanbonmatsu, D. M., Erickson, G. G., Simmons, T. G., 
McDonnell, A. S., ... & Lohani, M. (2020). Driver’s Arousal and Workload Under 
Partial Vehicle Automation  (Technical Report). Washington, D.C.: AAA Foundation 
for Traffic Safety.  

Strayer, D. L., Cooper, J. M., Turrill, J., Coleman, J., Medeiros-Ward, N., & Biondi, F. (2013). 
Measuring Cognitive Distraction in the Automobile (Technical Report). Washington, 
D.C.: AAA Foundation for Traffic Safety. 

https://www.sae.org/standards/content/j3016_202104/


81 

Strayer, D. L., Turrill, J., Cooper, J. M., Coleman, J. R., Medeiros-Ward, N., & Biondi, F. 
(2015). Assessing cognitive distraction in the automobile. Human Factors, 57, 
1300–1324. https://doi.org/10.1177/0018720815575149 

Tan, H. S., Rajamani, R., & Zhang, W. B. (1998). Demonstration of an automated highway 
platoon system. In Proceedings of the 1998 American control conference. ACC (IEEE 
Cat. No. 98CH36207), 3, 1823–1827. https://doi.org/10.1109/ACC.1998.707332 

Vogelpohl, T., Kühn, M., Hummel, T., & Vollrath, M. (2019). Asleep at the automated 
wheel—Sleepiness and fatigue during highly automated driving. Accident Analysis 
& Prevention, 126, 70–84. https://doi.org/10.1016/j.aap.2018.03.013 

von Hippel, E., & Tyre, M. J. (1995). How learning by doing is done: problem identification 
in novel process equipment. Research Policy, 24(1), 1–12. 
https://doi.org/10.1016/0048-7333(93)00747-H 

Walker, F., Boelhouwer, A., Alkim, T., Verwey, W. B., & Martens, M. H. (2018). Changes in 
trust after driving level 2 automated cars. Journal of Advanced 
Transportation, 2018. https://doi.org/10.1155/2018/1045186 

Weaver, S. M., Roldan, S. M., Gonzalez, T. B., Balk, S. A., & Philips, B. H. (2022). The effects 
of vehicle automation on driver engagement: The case of adaptive cruise control 
and mind wandering. Human Factors, 64(6), 1086–1098. 
https://doi.org/10.1177/0018720820974856  

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., …, Yutani, H. 
(2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 
1686. https://doi.org/10.21105/joss.01686. 

Wolfe, J. M., Horowitz, T. S., & Kenner, N. M. (2005). Rare items often missed in visual 
searches. Nature, 435, 439–440. https://doi.org/10.1038/435439a  

Xu, Y., Ye, Z., & Wang, C. (2021). Modeling commercial vehicle drivers' acceptance of 
advanced driving assistance system (ADAS). Journal of Intelligent and Connected 
Vehicles, 4(3), 125–135. https://doi.org/10.1108/JICV-07-2021-0011 

Young, R. A., Hsieh, L., & Seaman, S. (2013). The tactile detection response task: 
Preliminary validation for measuring the attentional effects of cognitive load. 
Driving Assessment Conference, 7. University of Iowa. 

Zhang, Y., Angell, L., Pala, S., & Shimonomoto, I. (2015). Bench-marking drivers’ visual 
and cognitive demands: A feasibility study. SAE International Journal of Passenger 
Cars–Mechanical Systems, 8(2), 584–593. https://doi.org/10.4271/2015-01-1389  

  



82 

APPENDIX A: DATA CODING DICTIONARY FOR OBSERVED BEHAVIORS  

Adapted from Strayer et al. (2017).  

Modes of 
Interaction Definition 

Texting Participant engages in cell-phone/IVIS* use for instant messaging. 

Verbal Cell Participant begins to text through the voice functions available on cell-
phone. 

Manual Cell Participant begins to text through manually inputting text into their 
phone. 

IVIS Verbal  Participant begins to text through the voice function of the IVIS within the 
car. 

IVIS Manual Participant begins to text through IVIS preset text responses. 

Unknown Participant reaches for phone and coders are unable to see the function of 
the phone while in the participant's hand. 

Listening Participant listens to car's hands free system to read text messages 
received while driving.  

Dialing Participant uses cell-phone/IVIS to dial and call. 
Verbal Dialing Participant uses cell-phone voice functions to dial a number.  

Manual Dialing Participant manually begins a call on cell-phone.  

IVIS Verbal  Participant uses IVIS to begin a call with a person through the voice 
function within the car. 

IVIS Manual Participant uses IVIS to begin a call through the steering wheel or center 
console of the vehicle.  

Unknown A phone call begins and coders are unable to percieve the mode by which 
it started. 

Listening Listening and speaking on the phone through any modality. Begins when 
dialing ends and the participant starts speaking. 

Radio Participant is listening to music and makes adjustments via cell-
phone or IVIS. 

Verbal Radio Participant uses cell-phone voice functions to change music/volume etc. 
Manual Radio Participant manually uses cell-phone to change music/volume etc. 

IVIS Verbal  Participant uses IVIS voice function to change music/volume etc. 
IVIS Manual Participant uses IVIS interface to change music/volume etc. 

Unknown Coders are unable to perceive how participant changes the music setting.  
Listening Participant is listening to music while driving freeway speeds. 
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Navigation Participant uses navigation features either through cell-phone or 
IVIS. 

Verbal Navigation Participant starts navigation through the voice functions available on 
their cell-phone. 

Manual Navigation Participant starts navigation through manual input on cell-phone. 

IVIS Verbal  Participant starts navigation through the voice function of the IVIS within 
the car. 

IVIS Manual Participant starts navigation by manually inputting locations through the 
IVIS. 

Unknown  Coders are unable to perceive how participant activates navigation. 

Listening 

Participant has started navigation and is actively following directions 
through audio or visual instruction. Engaged for the entire duration of 
navigation, not just when the navigation is actively giving a new 
instruction at the time. 

Unknown Tech Any action where the participant interacts with an object or tech that 
cannot be identified as Radio, Navigation, Dialing, or Texting.  

Verbal Cell Participant speaks into their cell-phone to input a command, but audio is 
indiscernible. 

Manual Cell Participant manually inputs commands into their cell-phone that is not 
discernible as dialing, radio, texting, or navigation. 

IVIS Verbal  Participant uses the IVIS voice function but purpose is indiscernible. 

IVIS Manual Participant manually inputs into IVIS but coders are unable to discern 
what they are doing. Accounts for temperature changes. 

Unknown Verbal Participant speaks command but audio is indiscernible and car functions 
do not seem to change.  

Unknown Manual Participant reaches for middle console area, it is unclear what they reach 
for, and their hands return to the steering area. 

Listening Participant is listening to indiscernible type of audio that cannot be 
categorized.  

Fatigue 
Participant shows signs of tiredness/lack of awareness, such as 
yawning, heavy eyelids, drooping head, or any other behavior that is 
clearly a sign of drowsiness.  

L2 ON 
Participant has engaged steering assist and the vehicle now has 
control over acceleration/deceleration. A car-specific symbol is 
present on the dash or IVIS indicating that L2 is engaged.  

L2 OFF 

Participant disengages lane assist. Symbol on dash or IVIS disappears 
indicating that L2 is off. Does not include lane changes, where L2 is 
automatically turned on and off in some vehicles. (For Volvo/Nissan: 
If L2 remains off for more than 30 seconds after a lane change, mark 
as L2 off.) L2 is turned off at exit sign on freeway ramp but is kept on 
when switching freeways. 
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Poor Conditions There are outside influences on the driving experience that are out of 
the driver's control/influence.  

Weather 

Driving conditions are affected by rain, snow, ice, or fog, causing 
participant to use windshield wipers, fog light, reduce speed or turn off 
L2. Includes any time windshield wipers are on due to weather, with a 30 
second offset interval between instances. 

Traffic 

Any traffic that impairs driving speed to under 50 miles per hour. If the 
participant slows to under 50 miles per hour on exit lanes, use this if 
there are any other cars in the exit lane. If they are just slowing down due 
to the steepness of the curve, do not use. 

Construction 

The presence of any road construction signs, workers, and/or vehicles. If 
no evidence of construction is present after 2 min and 30 seconds, go back 
to last cone or sign and stop construction duration 30 seconds after the 
last sign of construction. Do not count a single lone cone on the side of the 
road or orange stickers on HOV lane signs as construction. 

Emergency Vehicles 

Ambulances, police patrol vehicles, or roadside assistance have sirens 
and/or lights active and are driving on the road or are on the shoulder. 
Also includes snow plows and situations where people are waiting for 
emergency responders, such as an accident that has just happened, 
people pulled over on the side of the road with hazards on, or people 
outside their vehicle. Does not include: cars parked on the side of the road 
without flashers/people outside, construction vehicles in construction 
zones, or trucks with hazards on driving slowly up hills. 

Other 

Participant encounters any other outside influence that affects driving. 
Also used for marking unique/important observations such as FaceTime. 
If you think this may apply, it is best to discuss the observation with other 
coders first. 

Audio Engagement Participant either sings or talks with a 10 second maximum interval 
between instances. 

Reaching/Grabbing 

Participant physically engages with object or pet inside of car other 
than IVIS or cell-phone, specifically reaching into center console, 
passenger seat, or back seat, for at least a period of 3 seconds with a 
10 second offset interval between instances. Does not include minor 
car adjustment actions such as flipping down the sun visors or 
opening the sunroof. 

Food/Drink Participant is either actively drinking/eating or holding food or drink 
while driving, including holding food in lap or resting hand on drink. 
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Self 
Grooming/Fidgeting 

Participant engages in personal/hygene related tasks or fidgeting for 
at least a period of 3 seconds with a 10 second offset interval between 
instances. Includes touching the face, neck, head/hair, or moving 
hands while speaking on the phone as well as fidgeting fingers, 
readjustment in seat, and cleaning/wiping off hands/face. Hands 
moving from or returning to the steering are not a part of the 
duration. A single finger slightly moving is not enough to count. Start 
coding when participant is about to contact their face/body, not when 
hands are removed from the steering wheel. 

System Warning 

A system warning pops up on the HUD** or IVIS indicating that if the 
participant does not increase pressure on steering wheel, L2 will 
disengage.  
 
Tesla cars: add 1 system warning for text popping up, and another if 
the warning light begins to flash. You will usually add both. 

Other 
considerations 

A slight phone adjustment/check (including smart watches) does not 
count, and will be treated as an eyeglance behavior (i.e. see 
003_code_1.am 20:30 m/s). When lane lines become solid before the 
actual exit (in the exit lane), new tasks should not be recorded. 

* IVIS: In-Vehicle Information System  
** HUD: Head Up Display   
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APPENDIX B: SUPPLEMENTARY DATA FROM PART 2 

The following tables provides the means and standard errors for the effects analyzed in 
Part 2. Where significant, these means and standard errors are used to generate the 
figures presented in the results section. Values are provided here for reference. 

 

Automation-L2 Usage 

 Mean Std. Error 

Usage Frequency (%) 
Week 1 73.5 5.06 
Week 2 76.3 4.60 
Week 3 71.3 5.07 
Week 4 79.1 4.68 
Week 5 74.0 5.04 
Week 6 65.5 5.08 
Week 7 71.6 5.59 
Week 8+ 70.0 6.97 

Reengagement Time (s) 
Week 1 131 78.3 
Week 2 271 72.4 
Week 3 199 78.4 
Week 4 194 74.1 
Week 5 187 80.0 
Week 6 168 81.5 
Week 7 148 89.6 
Week 8+ 424 125.6 

 

Warnings and Driving Demand 

 Mean Std. Error 

Warnings Frequency (per minute) 
Week 1 0.205 0.04 
Week 2 0.133 0.04 
Week 3 0.218 0.04 
Week 4 0.230 0.05 
Week 5 0.366 0.05 
Week 6 0.356 0.05 
Week 7 0.202 0.05 
Week 8+ 0.258 0.07 

Automation Use by Driving Demand (%) 
Low 0.732 0.05 
Moderate 0.705 0.05 
High 0.606 0.05 
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Fatigue and Fidgeting: Factor x Condition 

 Mean Std. Error 

Fatigue (%)   
Automation-L2 1.85 0.45 
Experimental Control 1.15 0.45 
Naturalistic Control 0.47 0.45 

Fidgeting (%)   
Automation-L2 6.86 1.91 
Experimental Control 8.83 1.92 
Naturalistic Control 4.63 1.91 

 

Fatigue and Fidgeting: Factor x Week 

 Mean Std. Error 

Fatigue (%)   
Week 1 1.14 0.65 
Week 2 0.51 0.58 
Week 3 1.21 0.62 
Week 4 1.38 0.60 
Week 5 0.86 0.65 
Week 6 1.75 0.68 
Week 7 1.52 0.74 
Week 8+ 1.31 0.94 

Fidgeting (%)   
Week 1 5.20 2.09 
Week 2 5.38 2.02 
Week 3 6.68 2.06 
Week 4 6.03 2.04 
Week 5 7.37 2.09 
Week 6 8.94 2.12 
Week 7 8.61 2.18 
Week 8+ 8.11 2.40 

 

Distraction and Attention: Factor x Condition 

 Mean Std. Error 

Task Aggregate (%)   
Automation-L2 137 7.34 
Experimental Control 132 7.36 
Naturalistic Control 118 7.33 

Radio (%)   
Automation-L2 80.3 7.55 
Experimental Control 73.9 7.56 
Naturalistic Control 69.9 7.55 

Texting (%)   
Automation-L2 4.69 2.12 
Experimental Control 3.83 2.13 
Naturalistic Control 2.79 2.12 

Phone Conversation 
(%)   

Automation-L2 10.7 5.39 
Experimental Control 13.7 5.40 
Naturalistic Control 11.5 5.39 

Navigation (%)   
Automation-L2 14.0 4.75 
Experimental Control 12.3 4.76 
Naturalistic Control 13.4 4.74 

Video Watching (%)   
Automation-L2 2.40 1.70 
Experimental Control 2.61 1.71 
Naturalistic Control 1.98 1.70 
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Distraction and Attention: Factors x Week 
 Mean Std. Error 
Task Aggregate (%) 

Week 1 126 8.02 
Week 2 124 7.73 
Week 3 126 7.89 
Week 4 124 7.80 
Week 5 127 8.02 
Week 6 138 8.13 
Week 7 142 8.38 
Week 8+ 137 9.30 

Radio (%) 
Week 1 74.3 7.91 
Week 2 76.3 7.76 
Week 3 74.1 7.84 
Week 4 74.1 7.80 
Week 5 73.6 7.91 
Week 6 77.4 7.97 
Week 7 74.1 8.10 
Week 8+ 71.2 8.59 

Texting (%) 
Week 1 0.36 2.24 
Week 2 4.41 2.20 
Week 3 2.98 2.22 
Week 4 4.24 2.21 
Week 5 4.44 2.24 
Week 6 4.64 2.26 
Week 7 5.29 2.31 
Week 8+ 4.93 2.46 

Phone Conversation (%) 
Week 1 10.5 5.75 
Week 2 10.3 5.61 
Week 3 11.7 5.69 
Week 4 11.4 5.64 
Week 5 13.5 5.75 
Week 6 11.3 5.80 
Week 7 15.0 5.93 
Week 8+ 16.4 6.39 

 Mean Std. Error 
Navigation (%) 

Week 1 19.7 5.08 
Week 2 13.7 4.94 
Week 3 11.7 5.02 
Week 4 9.36 4.97 
Week 5 8.13 5.08 
Week 6 17.4 5.13 
Week 7 13.3 5.26 
Week 8+ 15.0 5.72 

Video Watching (%) 
Week 1 1.29 1.86 
Week 2 2.24 1.79 
Week 3 2.67 1.83 
Week 4 4.47 1.81 
Week 5 2.09 1.86 
Week 6 0.22 1.88 
Week 7 2.55 1.94 
Week 8+ 2.18 2.14 
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Modality of Interaction: Factor x Condition 

 Mean Std. Error 

Auditory Verbal (%)   
Automation-L2 0.72 0.30 
Experimental Control 1.08 0.31 
Naturalistic Control 0.51 0.30 

Visual Manual (%)   
Automation-L2 11.9 3.47 
Experimental Control 10.9 3.47 
Naturalistic Control 8.8 3.47 

 

Modality of Interaction: Factor x Week 

 Mean Std. Error 

Auditory Verbal (%) 
Week 1 0.60 0.41 
Week 2 0.79 0.37 
Week 3 0.17 0.40 
Week 4 0.89 0.38 
Week 5 1.93 0.41 
Week 6 0.44 0.43 
Week 7 0.70 0.46 
Week 8+ 0.42 0.58 

Visual Manual (%) 
Week 1 5.06 3.73 
Week 2 9.45 3.64 
Week 3 9.27 3.69 
Week 4 13.64 3.66 
Week 5 11.18 3.73 
Week 6 9.89 3.76 
Week 7 15.21 3.84 
Week 8+ 13.91 4.14 

 

 

Hardware Interface: Factor x Condition 

 Mean Std. Error 

Smartphone (%)   
Automation-L2 11.2 3.44 
Experimental Control 10.4 3.44 
Naturalistic Control 8.41 3.43 

Vehicle IVIS (%)   
Automation-L2 1.31 0.39 
Experimental Control 1.52 0.39 
Naturalistic Control 0.85 0.39 

 

Hardware Interface: Factor x Week 

 Mean Std. Error 

Smartphone 
(%)   

Week 1 4.64 3.71 
Week 2 8.45 3.62 
Week 3 8.28 3.67 
Week 4 13.3 3.64 
Week 5 11.6 3.71 
Week 6 9.38 3.75 
Week 7 14.5 3.83 
Week 8+ 13.2 4.13 

Vehicle IVIS 
(%)   

Week 1 0.99 0.46 
Week 2 1.51 0.43 
Week 3 1.06 0.44 
Week 4 1.23 0.43 
Week 5 1.40 0.46 
Week 6 0.91 0.47 
Week 7 1.45 0.49 
Week 8+ 1.10 0.57 
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