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Foreword 

With new advanced vehicle technology, drivers can allow automation to take on parts of 
the driving task. However, when circumstances dictate, drivers must be able to take back 
control of the vehicle safely and efficiently. Examining ways of supporting these control 
transitions is imperative and can help to realize the intended safety benefits of vehicle 
technology.   

This technical report summarizes a series of studies and data exercises aimed at 
examining driver’s readiness at taking over control of the vehicle following periods of 
automated driving as well as support systems that can help guide driver’s attention 
during the takeover. The report should be of interest to researchers, the automobile 
industry who are working in the domain of advanced vehicle technology, and safety 
advocates. 

 
 

 
C. Y. David Yang, Ph.D.  
 
President and Executive Director  
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Executive Summary 

As vehicle automation progresses, the driver’s role will transform from an operator to a 
system supervisor. With higher levels of automation, the automated vehicle (AV) is able 
to monitor the environment, which allows the driver to engage in non-driving related 
tasks (NDRTs). However, if the automated vehicle reaches its system limit (e.g., 
automation failure, adverse weather, lane markings disappear), the driver will be forced 
to resume control of the vehicle in a limited amount of time. Unfortunately, when drivers 
are decoupled from the operational level of control, they often have difficulty taking 
over in any situation, particularly in situations that the automation is not able to handle.   

This report, presented into two parts, highlights two studies aimed at facilitating 
takeover transitions in Level 3 automation. Part 1 examines driver takeover readiness; 
that is, driver behavior and physiological indices and other factors that are predictive of 
successful takeover performance. Knowledge of such measures can inform the 
development and tuning of driver state monitoring (DSM) systems. Part 2 examines a 
driver support system, a gaze guidance system, that helps orient drivers’ attention to 
areas of potential risk during a control takeover. This study leverages data from an 
existing naturalistic driving study as well as theoretical models of driver visual attention 
allocation.   

With respect to predicting driver takeover readiness and performance, a human-
subject experiment was conducted and a variety of machine learning (ML) models were 
developed and tested. In a driving simulator study, 32 participants were requested to 
take over control from automated driving while playing a video game on a tablet. 
Drivers’ physiological data, including heart rate indices, galvanic skin response (GSR) 
indices, and eye-tracking metrics, were collected and used as inputs to the ML models. 
Different modeling approaches were explored and tested to offer insights into (a) what 
modeling approach was best suited for the data; (b) what is the appropriate 
measurement window (time) for the different indices; (c) what measures or indices were 
most important in characterizing driver takeover readiness; and (d) the value of using 
personalized models (versus using general ones). Key highlights from these efforts 
include the following:  

• In examining driver physiological data in real-time, a random forest (RF) 
machine learning approach led to the best model predictions. Driver state 
monitoring systems (and their underlying algorithms) should consider such 
approaches.  

• Pre-takeover measurement windows of 9 to 14 seconds showed the highest 
model performance, with peak performance for the RF model occurring at 11 
seconds. DSM systems should strive to incorporate and/or validate their own 
outcomes using such time frames. 
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• GSR indices were the most important measures in predicting driver 
performance, followed by heart rate indices. As indicators of driver takeover 
readiness, these measures should be considered for inclusion in DSM systems 
as part of a suite of measures.  

• Personalized models have great potential for increasing model accuracy in 
real-world implementations. Generalized models that learn from new users 
have the potential to increase their accuracy and real-world utility.  

• The novel measure of takeover performance, based on the Fréchet distance, 
considers both temporal and spatial characteristics and is therefore useful in 
capturing the timeliness and quality of takeover performance. 

For the second part, supporting driver attention during takeover, a study was 
conducted to explore avenues to support driver attention during takeover events. It 
comprised two pieces: (a) identification of potential hazards that co-occur during driver 
takeover transitions and (b) the design and evaluation of a gaze guidance system to 
support drivers’ noticing of potential hazards during takeovers. The first exercise 
utilized naturalistic driving data from an existing database to identify types of potential 
hazards identified using a grounded approach in situations where advanced driver 
assistance systems (ADAS) issued alerts to the driver related to nearby hazards. The 
second exercise comprised a driving simulator study aimed at designing and evaluating 
a gaze guidance system, based on a theoretical model of selective visual attention. A 
driving simulator study was conducted wherein drivers were exposed to various 
takeover scenarios with the support of one of two types of gaze guidance system (high 
and low salience). The results showed that drivers using a highly salient attention 
guidance system were less likely to become involved in a collision with a secondary 
hazard during takeover transitions. The results suggest that gaze guidance (attentional) 
support is a viable approach to helping drivers during takeover events and worthy of 
further research and innovation.  
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Introduction 

As vehicle automation progresses, the driver’s role will transform from an operator to a 
system supervisor. Level 3 automated vehicles (AVs) possess the ability to perceive their 
surroundings and interpret road conditions while performing driving tasks such as 
accelerating, braking, steering, and navigating. The advanced capability allows the 
driver to engage in non-driving related tasks (NDRTs). However, if an AV encounters a 
system limit, such as vision system failure or path planning issues, the driver must 
quickly regain control of the vehicle. This transition from automated control to manual 
control presents a crucial challenge to the human driver, as they become increasingly 
out of the loop (OOTL) (Zhou et al., 2020; Petersen et al., 2019; Molnar et al., 2017) 

To help inform and address these issues, this report is organized into two parts, 
presenting two studies aimed at facilitating takeover transitions when using Level 3 
automation. Part 1 examines driver takeover readiness; that is, driver behavior and 
physiological indices and other factors that are predictive of successful takeover 
performance. Knowledge of such measures can inform the development and tuning of 
driver state monitoring (DSM) systems. Part 2 examines a driver support system, a gaze 
guidance system, that helps orient driver’s attention to areas of potential risk during a 
control takeover. This study leverages data from an existing naturalistic driving study as 
well as theoretical models of driver visual attention allocation.   

Predicting Driver Takeover Readiness and Performance 

Part 1 presents a human-subject experiment and a variety of machine learning (ML) 
models for predicting drivers’ takeover readiness and performance. A human-in-the-loop 
experiment was conducted with 32 participants, wherein drivers were requested to take 
over control from automated driving while playing a Tetris game. Drivers’ physiological 
data, including heart rate indices, galvanic skin response (GSR) indices, and eye-tracking 
metrics, were collected and used as inputs to the ML models. Different modeling 
approaches were explored and tested to offer insights into (a) what ML approach was 
best suited for the data; (b) what is the appropriate measurement window (time) for the 
different indices; (c) what measures or indices were most important in characterizing 
driver takeover readiness; and (d) the value of using personalized models (versus using 
general ones).  

Supporting Driver Attention During Takeover 

Part 2 sought to explore avenues to support driver attention during takeover events. It 
comprises two pieces: (a) identification of potential hazards that co-occur during driver 
takeover transitions and (b) the design and evaluation of a gaze guidance system to 
support drivers’ noticing of potential hazards during takeovers. The first exercise 
utilized naturalistic driving data from an existing database, the Integrated Vehicle-Based 
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Safety System (IVBSS) program (Sayer et al., 2011). Ten types of potential hazards were 
identified using a grounded approach in situations where ADAS systems issued alerts to 
the driver related to nearby hazards. Researchers documented the co-occurrence of 
other nearby hazards (not ones that triggered the alert) that could conceivably impact 
driver responses to the alert or situation. The second exercise comprised a driving 
simulator study aimed at designing and evaluating a gaze guidance system, based on the 
N-SEEV (Salience, Effort, Expectancy, Value) model of visual attention (Wickens, 2015). A 
human-in-the-loop experiment was conducted wherein drivers were exposed to various 
takeover scenarios with the support of one of two types of gaze guidance system (high 
and low salience).  

  



 

5 

 

PART 1: Predicting Drivers’ Takeover Readiness and Performance Using 
Machine Learning 

Existing studies have examined factors that influence drivers’ takeover performance. A 
wide range of factors have been identified, including drivers’ characteristics (Clark and 
Feng, 2017; Du et al., 2020b; Wan and Wu, 2018; Zeeb et al., 2017), driving and external 
environments (Gold et al., 2016; Li et al., 2018), and the design of driver–vehicle interface 
(Eriksson et al., 2018; Helldin et al., 2013). These empirical studies have documented the 
considerable variability in taking over behavior and control in different driving 
environments and situations. 

These studies shed light on the relationships between certain factors and takeover 
performance; for instance, high traffic density harmed takeover performance (Gold et 
al., 2016). However, with few exceptions (e.g., Gold et al., 2018; Braunagel et al., 2017; Du 
et al., 2020c), little effort has been made to integrate these findings into computational 
models capable of predicting drivers’ takeover performance in real time. Moreover, 
research to date has largely focused on predicting either takeover timeliness or quality. 
There is a gap in quantifying both temporal and spatial characteristics of the takeover 
readiness. That is, examining upstream indices occurring prior to the takeover request in 
order to identify cues that are predictive of driver readiness. Knowledge of such factors 
can inform the development and implementation of DSM systems.  

Therefore, this project aims to measure and model factors that predict drivers’ 
takeover readiness by analyzing their physiological data. A human-in-the-loop 
experiment with 32 participants was conducted, wherein drivers were requested to take 
over control from automated driving while playing a Tetris game. Drivers’ physiological 
data, including heart rate indices, GSR indices, and eye-tracking metrics, were collected 
and takeover quality was assessed using a novel metric to quantify performance. 
Different ML modeling approaches were explored and tested to offer insights into the 
ideal modeling approach and parameters as well as the ideal measurements for 
characterizing driver takeover readiness.  

Method 

Participants 

A total of 32 participants (average age = 25.8 years, SD = 4.4 years, 16 females, 16 males) 
with normal or corrected-to-normal vision participated in the experiment. Each 
participant received a payment of 30 dollars for their participation. The study was 
approved by the University of Michigan Institutional Review Board.  
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Apparatus and Stimuli 

Driving Simulator and Automated System. The study was conducted in a fixed-
base driving simulator from Realtime Technologies Inc. (RTI, Michigan). The virtual 
world was displayed on three monitors, located approximately 4 feet in front of the 
participant (See Figure 1). The simulated vehicle was controlled by a steering wheel and 
pedal system. The vehicle was programmed to simulate the behavior of an SAE Level 3 
automation, which handled the longitudinal and lateral control and navigation, and 
responded to traffic elements. Participants could press the button on the steering wheel 
to activate the automated mode, which was indicated by an auditory sound and a blue 
light on the dashboard. Whenever the AV reached its system limit, a take-over request 
was issued, consisting of a spoken auditory warning (“Takeover”) and the disappearance 
of the blue light on the dashboard. At the same time, the automated mode would be 
automatically deactivated for the driver to take over control of the vehicle. 

 

Figure 1. RTI driving simulator (left) and non-driving related task (Tetris) (center, right). 

 Physiological Sensors. During the experiment, participants wore the Pupil Core 
Glasses eye-tracking system (Pupil Labs, Germany) that provided real-time gaze and 
pupil data (Figure 2). The sampling rate of the eye-tracking system was 200 Hz. The 
Shimmer3 GSR+ unit (Shimmer, MA, USA), including GSR electrodes and 
photoplethysmogram (PPG) probe, was used to collect participants’ GSR and heart rate 
data with a sampling rate of 128 Hz (Figure 2). The iMotions software (iMotions, MA, 
USA) was used for physiological data synchronization. 

      

Figure 2. Physiological sensors: eye tracker (left) and Shimmer GSR and heart rate monitor (right). 

Non-Driving Related Task. Participants were asked to play a Tetris game when 
the vehicle was in automation mode. The NDRT task was selected to promote increased 
drivers’ eyes-off-the-road and hands-off-the-wheel conditions anticipated in SAE Level 3 



 

7 

 

automated driving mode. In a Tetris game, puzzle tiles were randomly generated and 
presented. The task was running on an 11.6-inch touchscreen tablet mounted next to the 
steering wheel (see Figure 1). 

Experimental Design 

The experiment used a 2 × 2 within-subjects design with two independent variables: 
takeover lead time and tablet location. The two variables were chosen to induce a 
varying degree of takeover performance. Takeover lead time has been shown to 
significantly influence takeover performance (Eriksson and Stanton, 2017; Du et al., 
2020a), and tablet location also impacts drivers’ car following performance (Lamble et 
al., 1999). Benchmarking previous studies (Eriksson and Stanton, 2017; Du et al., 2020a), 
the takeover lead time was set to 4 seconds or 7 seconds. The tablet was placed 25 or 55 
centimeters away from the steering wheel for the participant to perform the secondary 
task. The sequence of the four conditions was balanced using a balanced Latin square 
design. Each participant experienced four takeover events in the experiment, as 
described in Table 1. 

Table 1. Description of takeover events. 

Event Scenario Type Description 

1 Construction Ahead 
Urban, two-lane road—construction blocking the lane (traffic 
cones and equipment) requiring that driver change lanes to 
the adjacent (vacant) lane.  

2 Police Vehicle on 
Shoulder 

Rural two-lane road—police parked on side of road partially 
obstructing the righthand lane, requiring driver to change 
lanes.  

3 Stationary Bus Ahead Urban two-lane road—a bus is stopped unexpectedly in the 
lane ahead, requiring that the driver change lanes. 

4 Lead Vehicle Sudden 
Stop 

Rural two-lane road—a lead vehicle brakes abruptly, forcing 
the driver to brake and/or change lanes.  

 

Procedure  

Upon arrival, participants provided informed consent and filled out a demographic 
survey. The participants were given an introduction that described the experiment. Next, 
participants received a training session to familiarize themselves with the driving 
simulator and the Tetris game. During the training, participants practiced how to drive, 
change lanes, and engage/disengage the automated driving mode. They were also 
introduced to the visual display and auditory alerts for takeover requests. Participants 
were then asked to drive the simulator until they felt comfortable handling the simulator 
controls. After that, participants played the Tetris game to get familiar with it. 
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After the training, participants were fitted with the eye tracker. In addition, 
experimenters attached two GSR electrodes to the participants’ left foot and the PPG 
probe to their left ear lobe. After sensor location adjustment and eye-tracking 
calibration, participants started the main experiment. 

As shown in Figure 3, the main experiment began with the command to activate 
the automated driving mode. After that, there was an NDRT phase where participants 
were asked to play the Tetris game. Participants were informed that there was no need to 
monitor the environment when the AV was in automated driving mode. Once a takeover 
request (TOR) was issued, participants were required to take over control of the vehicle 
immediately. Participants were instructed to comply with all the traffic laws when they 
drove manually. They were informed that the speed limit was 35 mph. Participants could 
hand back the control to the AV after they negotiated the driving situation. When the AV 
was re-engaged, participants were asked to complete a short verbal questionnaire. 

 
Figure 3. Sequence of takeover events in the experiment. 

Features for Model Development 

Drivers’ physiological and driving dynamics data were gathered in the study. The 
physiological data, including heart rate-related features, GSR-related features, and eye-
tracking features, were used as inputs for the model development for evaluating 
takeover readiness. Detailed descriptions of the physiological features are presented in 
Table 2. The driving dynamics data were processed to calculate the proposed ground 
truth labels of the takeover performance (i.e., the quality of takeover performance). In 
total, 32 participants’ data were processed and used to train and test the proposed 
prediction models. 
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Table 2. Descriptions of physiological and condition-related features. 

Note: HR = heart rate; min = minimum; max = maximum; GSR = galvanic skin responses; TOR = takeover 
request. 

Pre-Processing of Physiological Features 

During the data pre-processing, 36 features, including 28 heart rate–related and GSR-
related indices, 7 eye-tracking indices, and 1 environmental feature, takeover lead time, 
were extracted. Heart rate indices were calculated for mean, minimum, maximum, and 
standard deviation. For gaze behaviors, drivers’ blink number, horizontal gaze 
dispersion, fixation of road or NDRTs, and fixation durations were calculated. GSR phasic 
components were extracted from raw GSR signals using the continuous decomposition 
analysis via Ledalab in Matlab (Benedek & Kaernbach, 2010). Maximum and mean GSR 
phasic activation were calculated to indicate drivers’ arousal and stress in response to 
TORs (Wintersberger et al., 2018). For eye-tracking features, horizontal gaze dispersion 
was defined as the standard deviation of gaze heading. Decreases in horizontal gaze 
dispersion and blink number indicated increases in cognitive load and decreases in 
attention allocation (Wang et al., 2014; Merat et al., 2012). All features are listed in Table 
2. 

Fréchet Distance-Based Ground Truth Labels for Takeover Performance 

A novel metric was used to quantify takeover performance based on the Fréchet 
Distance (FD) (Eiter & Mannila, 1994; Alt & Godau, 1995) between the theoretical optimal 
takeover trajectory and the actual takeover trajectory. Based on this metric, the more 
closely the actual takeover trajectory resembles the theoretical optimal, the better the 
takeover performance. 

The theoretical optimal trajectory is the solution to minimize a cost function 
provided in Abbas et al. (2017). Its goal is to achieve a tradeoff between tracking the 

Feature Description 

HR Indices Mean, min, max, and standard deviation of heart rate, inter-beat interval 
GSR Indices Mean, max, and standard deviation of GSR in phasic component 
GSR Peak Number of GSR peaks, and peak rise time 

Fixation Fixation number and duration in different areas of interests (i.e., driving 
scenes and NDRT tablet) 

Blink Number of blinks 

Gaze Dispersion Standard deviation of the values for gaze angle from the right front 
(radians) 

Eyes-on-Road Proportion of time that participant’s gaze is on the road 
TOR Lead Time Short (4s) or long (7s) TOR lead time 
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center line of the corridor and regulating the steering rate input while avoiding 
obstacles. In addition, as Febbo et al. (2017) stated, the way to avoid obstacles in Abbas et 
al. (2017), namely the soft constraint method, cannot be guaranteed to avoid collision in 
all cases. Therefore, this work adopted the hard constraint method. Moreover, the 
trajectory planner changed the lane when the headway to the obstacle is 4 or 7 seconds 
ahead (Happee et al., 2017). Then CasADi (Andersson et al., 2019) was implemented to 
transfer the optimal control problem into a nonlinear optimal control problem, which 
was then solved by the nonlinear program solver IPOPT (i.e., interior point optimizer; 
Wächter & Biegler, 2006). The open loop solution was then used as the theoretical 
optimal trajectory. 

The trajectories contained temporal and spatial information of the optimal vehicle 
states at different time points. After obtaining the theoretical optimal trajectory, the FD 
between the theoretical optimal and the actual trajectories was calculated using the 
following equation: 

FD(A, B) = infα,β maxt {d(A(α(t)), B(β(t)))} (1) 
   

where d is the euclidean distance in R2, α and β are non-decreasing surjective functions, 
and t denotes the time point between TOR and the end of the takeover maneuver. 

FD is widely used to measure the similarity between two curves, which considers 
the location and ordering of the points along the curves. Successful applications included 
route identification (Lyu et al., 2021) and driver–car matching (Meng et al., 2019). 

Visualization of Optimal and Actual Trajectories. Figure 4 illustrates the 
theoretical optimal and the actual trajectory for a sample takeover event. The orange 
line denotes the theoretical optimal, and the blue line indicates the actual trajectory. The 
X-axis and Y-axis denote the lateral and longitudinal coordinates of the simulation world, 
respectively. Compared to the theoretical optimal, the actual driving trajectory in this 
example revealed a longer response time after receiving the TOR. Moreover, lateral 
control of the vehicle was initially unstable after the transition of control but eventually 
stabilized. 
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Figure 4. Illustration of the theoretical optimal and the actual driving trajectory for a takeover event 
in the simulation world. The orange line denotes the theoretical optimal; the blue line denotes the 

actual trajectory. 

Generalized Prediction Model  

Data Pre-processing and Train-Test Split 

Each participant experienced four takeover events, so data from 128 takeovers were 
used for the modeling. For each takeover event, the driving dynamics data were 
processed to generate the FD-based ground truth labels for the takeover performance. 
Furthermore, the physiological features for each takeover event were processed using a 
moving window method to augment the training and testing datasets to a larger sample 
size. The moving or sliding window method is common for handling time-series data. 
Since the participants were in a steady mental state and engaged in the secondary task 
without any interrupting stimuli before the TOR, it was assumed that the physiological 
features were identically distributed within a short time horizon immediately before the 
TOR, thus allowing the moving window technique to be leveraged to augment the 
datasets. The time horizon of interest was defined as the 20 second window prior to the 
TOR. The size of the moving window was varied from 1 second to 20 seconds and the step 
length was fixed to 1 second. For example, if the window length is 5 seconds and the step 
length is 1 second, the first window is 20 seconds to 15 seconds before the TOR, and the 
second window is 19 seconds to 14 seconds before the TOR, etc. Twenty-eight 
physiological features and seven eye-tracking features were calculated within each 
window and attached the same label from the specific takeover event according to the 
assumptions. All features were normalized to values between 0 and 1 using the MinMax 
Scaler method. Finally, the data were randomly split 80% into the training set and 20% 
into the testing set. 
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Model Training and Variable Selection 

The conventional training and testing method of ML models was applied to compare the 
performance of five different ML models, including Linear Regression (LR), Ridge 
Regression (Ridge), Lasso Regression (Lasso), Decision Tree (DT), and Random Forest 
(RF), for different time window lengths before the TOR. This step aimed to identify the 
optimal ML model for predicting takeover performance and the optimal window length. 
All 36 predictors were included for model development: GSR-related, heart rate–related, 
eye-tracking, and takeover lead time. 

Different moving window lengths were compared for sampling the physiological 
features before the TOR to identify the optimal time window length for predicting 
takeover performance. The model performance was evaluated using Mean Absolute 
Error (MAE), Mean Squared Error (MSE), Root Mean Absolute Error (RMSE), and adjusted 
training and testing R2 values. The adjusted R2 values are significant metrics in 
evaluating the model adequacy in terms of the proportion of the variability explained by 
the model. The findings have implications on the design of the prediction model in 
practical applications, shedding insights into the appropriate time window and 
frequency in collecting and calculating the physiological features as input of the model. 

Considering that human subject data are difficult to collect in practical 
applications, the large number of available features in the current experimental design 
is an ideal case; however, such a scenario may not be realistic when the resources to 
collect all 36 features are limited. Therefore, the most significant groups of features in 
predicting the takeover performance were identified and the lower bounds of model 
performance using only limited features were explored. Principal Component Analysis 
(PCA) was applied on the input features to reduce the dimensionality of the dataset to 
keep the partial variability in the original dataset in order to test the performance under 
constraints and gain insights into the relative importance of different features 
(measures). The principal components (PCs) are the linear combinations of the input 
features, which retain the variables with the most variability. By examining the loadings 
of each PC, one can identify the most significant variables in the prediction models to 
provide better explainability of the prediction models. 

Results 

All model development and testing was carried out on a MacBook Pro with M1 Pro chip 
and 16 GB RAM running MacOS Venture 13.1. Python 3.9 and packages including pandas 
(McKinney, 2010), numpy (Harris et al., 2020), scikit-learn (Pedregosa et al., 2011), and 
other supporting packages were used for model development and testing. The optimal 
hyperparameters were trained using the GridSearch method provided by the scikit-learn 
package. 
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Model Development without PCA 

Figure 5 and Table 3. Testing R2 values of the five proposed models of different window 
lengths without dimension reduction.Table 3 show the average adjusted testing R2 values 
of the five ML models using different moving window lengths without dimension 
reduction. The RF model outperformed the other four models for different moving 
window lengths. With the exception of moving window lengths of 19 and 20 seconds, the 
average adjusted R2 values of the rest window lengths were over 0.7, meaning the RF 
model captured approximately 70% of the variability on average for window lengths 
between 1 to 18 seconds. The DT model was the second-best prediction model. The other 
three models, LR, Ridge, and Lasso, significantly underperformed compared to the RF 
and DT models. The results suggest that the input features have a nonlinear relationship 
to the outcomes since the RF model is an ensemble model, which can capture the 
underlying nonlinear trend in the dataset. In contrast, the three linear models failed to 
capture the nonlinear trend resulting in poor prediction performance. Finally, from 
Table 3, the optimal window length for the RF model in predicting the takeover 
performance was 11 seconds with an adjusted testing R2 value of 0.94. There was an 
overall trend with prediction performance increasing from the 1-second window length 
to the 11-second window length and decreasing from the 11-second window length to the 
20-second window length. In general, however, the model performed highly in the 9-to-
15-second range.  

 

 

Figure 5. Adjusted testing R2 values for the five ML models of moving window lengths from 1 second 
to 20 seconds. 
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Table 3. Testing R2 values of the five proposed models of different window lengths without dimension 
reduction. 

Window Length LR Ridge Lasso DT RF 
1 0.206 0.218 0.172 0.5 0.713 
2 0.24 0.253 0.184 0.529 0.774 
3 0.238 0.247 0.183 0.627 0.853 
4 0.191 0.191 0.138 0.615 0.839 
5 0.242 0.245 0.153 0.678 0.883 
6 0.261 0.261 0.15 0.693 0.911 
7 0.296 0.299 0.153 0.674 0.916 
8 0.328 0.349 0.172 0.807 0.912 
9 0.336 0.328 0.175 0.705 0.928 

10 0.281 0.312 0.175 0.658 0.924 
11 0.352 0.338 0.132 0.707 0.942 
12 0.366 0.373 0.188 0.789 0.928 
13 0.376 0.339 0.168 0.758 0.924 
14 0.341 0.327 0.181 0.788 0.934 
15 0.39 0.357 0.17 0.76 0.933 
16 0.407 0.367 0.194 0.793 0.902 
17 0.26 0.178 0.143 0.777 0.806 
18 0.231 0.215 0.095 0.763 0.813 
19 0.181 0.225 0.051 −0.107 0.442 
20 −0.853 0.197 0.001 −0.093 −0.074 

 

The average adjusted training R2 values were also plotted for the five ML models 
using different moving window lengths without dimension reduction. In Figure 6, a 
similar trend is observed in the training values as for the testing R2 values. The RF model 
outperformed the other four models for different moving window lengths except for the 
16-second and 17-second windows, where the DT model performed better. However, as 
shown in Table 3, these two window lengths do not achieve better testing performance 
for the DT model compared to the RF model. Furthermore, the other three linear models 
still significantly underperform compared to the DR and RF models. Finally, from Table 
4, all training R2 values were above 0.85, which suggests that the proposed models can 
capture more than 85% of the total variability in the training set. Among all different 
training R2 values, the highest values were generally observed for the 9-to-14-second 
window length. 
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Figure 6. Adjusted training R2 values for the five ML models of moving window lengths from 
1 second to 20 seconds. 
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Table 4. Training R2 values of the five proposed models of different window lengths without 
dimension reduction. 

Window Length LR Ridge Lasso DT RF 
1 0.236 0.23 0.16 0.689 0.961 
2 0.236 0.231 0.155 0.739 0.973 
3 0.254 0.248 0.153 0.814 0.978 
4 0.28 0.273 0.172 0.844 0.981 
5 0.287 0.281 0.166 0.864 0.983 
6 0.3 0.292 0.167 0.796 0.985 
7 0.304 0.295 0.165 0.855 0.985 
8 0.314 0.3 0.157 0.889 0.988 
9 0.327 0.317 0.155 0.889 0.99 

10 0.35 0.329 0.157 0.932 0.988 
11 0.349 0.325 0.165 0.853 0.989 
12 0.361 0.33 0.155 0.965 0.991 
13 0.375 0.343 0.158 0.935 0.992 
14 0.39 0.339 0.145 0.969 0.99 
15 0.391 0.333 0.162 0.93 0.988 
16 0.393 0.33 0.155 0.992 0.984 
17 0.415 0.362 0.168 0.984 0.975 
18 0.432 0.362 0.186 0.944 0.967 
19 0.428 0.311 0.175 0.826 0.94 
20 0.455 0.318 0.188 0.203 0.859 

 

However, the relatively smaller testing R2 values observed for the 9-to-10- and 12-
to-14-second time windows suggests overfitting of data in the training set. Therefore, the 
11-second window length was selected for subsequent modeling.  

Model Development with PCA for Variable Selection 

Human subject data are often difficult to collect for a large sample size and for a large 
number of measures or features. In practical applications, there might only be access or 
budget for certain groups of features based on the available sensors. In the previous 
section, the training and testing R2 values indicated that the RF model performed very 
well in many instances, especially for an 11-second time window. To test the model 
performance under imperfect or incomplete observations and gain insights into the 
relative significance of the variables, a PCA was applied to reduce the dimensions and 
maintain partial variability of the input data to select the most significant input features, 
using the 11-second moving window length. 
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To select the optimal number of PCs, the scree plot of the first five PCs with the 
largest proportions of explained variance is plotted in Figure 7. Although the first elbow 
point appears at the second PC, the second elbow point at the fourth PC was selected in 
order to maintain over 70% of the total variability in the training set. 

 

Figure 7. Scree plot of the PCA results using an 11-second time window. 

The same modeling analysis was conducted using the four PCs as predictors to test 
the model performance. Table 5 shows the prediction performance of the five models. 
The results show the two tree-based models (DT and RF) significantly outperformed the 
other three linear models, which further indicates the tree-based model can better 
capture the nonlinear trends in the training and testing set. Between the two tree-based 
models, the RF model performed significantly better in terms of the training and testing 
R2 values. This matches the previous findings that the RF is the best model for predicting 
takeover performance. However, given that the dimension reduction maintained 
approximately 70% of the original variability in the training set, the performance of the 
training and testing sets decreased slightly relative to models without dimension 
reduction.  

Table 5. Prediction model performance of using the 11-second moving window to train the ML 
models with dimension reduction. All metrics are average values across different randomized splits 
of the training and testing sets. 

 MAE MSE RMSE Training R2 Testing R2 

Linear Regression 14.79 301.69 17.37 0.191 0.173 
Ridge Regression 13.81 301.82 17.74 0.191 0.172 
Lasso Regression 15.56 323.60 17.99 0.135 0.113 
Decision Tree 7.26 147.24 12.13 0.817 0.588 
Random Forest 5.63 79.12 8.89 0.968 0.783 
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The PCA result provides implications in identifying the significant groups of 
variables in predicting takeover performance. To help characterize these groups, the 
loadings of the top four PCs were extracted in order to identify the most significant 
factors in predicting takeover performance. The result is presented in Table 6. For the 
first PC, all significant features are GSR-related indices. Save for a single GSR-related 
measure, takeover lead time and heart rate–related indices were the primary factors for 
the second PC. For the third PC, some eye glance measures as well as maximum peak 
times for GSR and takeover lead time were significant. Lastly, the fourth PC consisted 
primarily of eye-tracking features and heart rate–related indices. Since the PCs are 
ordered in decreasing order of percentages of the explained variability, the findings 
suggest the GSR-related indices were the most important features for identifying driver 
takeover readiness, followed by heart rate–related indices, takeover lead time, and eye-
tracking features. 

Table 6. Significant variables with the largest loadings of the top four PCs. Different groups of 
features are in different font colors to highlight the group’s importance. 

PC-1 PC-2 PC-3 PC-4 

GSR RAW mean Peak times max Fixation NDRT Fixation NDRT 
duration 

GSR RAW max Heart rate PPG  
ALG mean 

Fixation NDRT 
duration Fixation NDRT 

GSR RAW min Heart rate PPG  
ALG min Peak times max Gaze proportion 

Peak times max Heart rate PPG  
ALG max Takeover lead time Fixation road 

Peak times std Takeover lead time  IBI PPG ALG max 

GSR conductance  
CAL max   IBI PPG ALG std 

GSR conductance  
CAL min    

GSR conductance  
CAL mean    

Note: blue = GSR features, gold = HR features, green = takeover lead time, red = eye features. 

Personalized Model for New Drivers 

The machine learning model developed in the previous section assumed that one had 
access to all observations from all participants. However, in practice, when attempting to 
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predict a new driver’s takeover performance, oftentimes there is no prior information or 
data about the new driver. One viable option is to update a generalized model into a 
personalized model by continuously incorporating the new driver’s data into the 
machine learning model as they increase their interactions with the vehicle. As such, the 
personalized model can be fine-tuned to capture individual differences and is expected 
to achieve better prediction performance. 

Personalized Prediction Model 

In this step, the proposed model (pre-trained on the training set) was applied to predict 
the takeover performance of an unobserved driver. For example, if a consumer buys a 
new Level 3 autonomous vehicle equipped with driver state monitoring features (and 
the underlying takeover performance prediction model) to monitor their behavior, the 
initial model will be a generalized model with no prior information about the new 
driver. In this case, the physiological data from the unobserved driver will be gathered 
gradually to calibrate the pre-trained generalized model to become a personalized 
model. If many observations are included in the pre-training, the generalized model can 
capture more detailed nonlinear trends in the driving population. However, if too much 
information is used to train the generalized model, when the model is calibrated with 
new observations it would be very insensitive to the relatively smaller volume of new 
data. On the other hand, if the generalized model is established with too few 
observations in the pre-training, the model can be personalized easily with only a small 
amount of new data but the model performance of the generalized model will be 
compromised. Thus, there is a tradeoff between the generalization capability and 
personalization capability. This process was simulated in the current exercise by 
iteratively adding different percentages of new test data into the training data and 
evaluating the model performance on the newly collected data. The purpose was to shed 
light on the design of a personalized model and demonstrate the prediction capability of 
the proposed personalized model. 

The 11-second time window was again employed to explore this concept based on 
the results from the previous sections. First, the leave-one-out method was used to 
exclude one participant as the “unobserved” driver. The process was simulated by 
excluding one participant’s data as the testing set. Since each participant only has four 
takeover events, the step size of the moving window was reduced to 0.25 seconds to 
generate more testing data. Then, the testing set was divided into ten folds to simulate 
the process of actively collecting the new driver’s data. Therefore, the testing R2 values 
were tested on the next fold of the new data to denote they are collected in the next 
period. Then, the “unobserved” driver’s data was gradually included to simulate the 
online learning process. Specifically, process included the following steps: 

1. Train the prediction model on the training set. 
2. Collect a new set of data from the new driver. 
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3. Test on the newly collected set of data. 
4. Add the new data to the training set and return to step 1. 

Due to the small amount of data observed for each participant, it was unlikely that 
the new observations would provide sufficient personalization (i.e., there would remain 
bias towards the generalized model, which includes data from the remaining 31 
participants). Therefore, different numbers of training drivers (from 5, 10, 15, and up to 
30 drivers) were tested. When there were over 20 drivers’ data in the training set, it was 
observed that the generalized model cannot be adequately personalized to accommodate 
individual differences after adding new observations, due to the unbalanced training 
and testing data. On the other hand, if the generalized model was trained on too few 
drivers’ data, it failed to capture the underlying nonlinear trend. That is, it cannot 
generalize to new drivers’ predictions very well. Based on some initial testing, 15 drivers 
were selected for the training set for this exercise. 

Results 

Table 7 presents the result of the model performance of the personalized models built 
with different percentages of new observations using the 11-second time window and RF 
model. From Table 7, the testing R2 values demonstrate the personalized model can be 
improved as newly observed driver data are gradually added to the generalized model. 
That is, the adjusted testing R2 increased as more and more new observations were 
incorporated into the training set. At the outset, the model can only explain 0.40 of the 
total variability in the testing set when there are 10% of new observations in the training 
set. However, the testing significantly improved to 0.59 when another 10% of new 
observations were added. With personalization, the model can achieve adjusted testing 
R2 value of 0.99 when the percentage of new observations gradually increased to 50 
percent. 

Table 7. Comparison of model performance of the generalized model and the personalized models 
built with different percentages of new observations using the 11-second time window and RF model. 
All metrics are average values across different randomized training and testing sets. 

 MAE MSE RMSE Training R2 Testing R2 

Adding 10% of new observations 7.07 135.74 10.49 0.99 0.40 
Adding 20% of new observations 0.70 1.52 1.13 0.99 0.59 
Adding 30% of new observations 0.59 1.23 0.97 0.99 0.68 
Adding 40% of new observations 0.30 0.57 0.70 0.99 0.93 
Adding 50% of new observations 0.16 0.22 0.39 0.99 0.99 
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Discussion 

A human-in-the-loop experiment with 32 participants was conducted, gathering an array 
of driver physiological data, including heart rate indices, GSR indices, and eye-tracking 
metrics. A new metric was proposed to evaluate takeover performance based on the 
Fréchet Distance between theoretically optimal trajectory and real driving trajectory. 
The FD measures the similarity between two curves and is widely adopted in 
transportation research (Lyu et al., 2021; Huang et al., 2020). Since the FD calculates the 
distance of the location and time horizon ordering of the points along the curves, it 
contains both temporal and spatial characteristics of the takeover performance. 
Therefore, it is a combined metric that considers the timeliness and quality of the 
takeover performance. 

The aims of this study were to examine the best ML modeling approach and 
measurement timeframe as well as which measures or indices were most important in 
characterizing driver takeover readiness. Lastly, general versus personalized models 
were evaluated.  

Prediction Models and Measurement Window Length 

In this work, the performance of five ML models was compared in predicting takeover 
performance. The RF model outperformed all other models when comparing the average 
testing R2 values. The moving window length was varied to find the optimal window 
length for predicting the takeover performance. The results show that the prediction 
performance on the testing dataset first increases when the window length was 
increased from 1 second to 11 seconds and then decreases from 12 seconds to 20 seconds, 
with sharp declines in performance at the 19- and 20-second marks. This suggests that 
the time window length should be around 11 seconds for the practical application of the 
proposed ML model (and, in general, the models performed highly in the 9-to-14-second 
range). Furthermore, the RF and DT models significantly outperformed the other three 
linear models, demonstrating the capability of capturing the nonlinear trend in the 
dataset. The outcomes have implications for selecting the range of time windows and 
modeling approaches to achieve comparable prediction performance. 

The wide range of window lengths for near-optimal prediction performance in 
different settings might be because different physiological signals have different 
effective window lengths. Some physiological signals (e.g., pupil diameter) perform 
better with a shorter window size because they change rapidly according to the changes 
in the driver’s cognitive workload (Kramer et al., 2013). Some physiological signals (e.g., 
heart rate) perform better with a longer window size because it can provide an overall 
index of the driver’s mental state (Solovey et al., 2014). Future research may shed insight 
into model performance with customized time windows for different physiological 
signals. 
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Driver Features and Takeover Readiness 

Thirty-six input features were used to train the prediction model. PCA was then applied 
to reduce the dimension of the input dimensions to provide insights into the significant 
groups of variables in the prediction task. That is, measures that were the strongest 
indicators of driver readiness to takeover control. Using the transformed input features 
to train the models, the model performance was maintained to an adjusted R2 value of 
0.78 using an 11-second time window. Although the prediction performance did not 
outperform one using all features, the results show that even a limited number of 
features can predict 70% of the original variability. This has practical implications since 
the sensor data is prone to noise and disturbance and the capacity to collect all 36 
features is unlikely in real-world applications. 

Critically, the most significant variables in the model training were identified 
from the transformed PCs. Compared with previous studies on using physiological 
signals to analyze drivers’ states and interactions with the driving environment (Mehler 
et al., 2012; Radlmayr et al., 2014; Wang et al., 2014; Ratwani et al., 2010; Young et al., 
2013), the current findings provide implications in the importance of the group of 
physiological features in indicating driver takeover readiness. Measures derived from 
GSRs were the strongest predictors of takeover performance in the current study, 
followed by heart rate indices. As relatively non-intrusive methods for gathering driver 
physiological measures, it is possible that these might provide valuable inputs or 
augmentations for future DSM systems. It follows that these results can provide future 
researchers and practitioners with guidance on how to design driver monitor systems 
and prioritize the wearable technology and vehicle sensors in a minimally invasive 
manner to predict drivers’ takeover performance in real time. 

Personalized Models 

In the last step of this exploration, personalization was shown to significantly improve 
the model performance without prior information about the new driver. Typically, 
models have no access to or prior knowledge about a new driver’s data. Thus, a 
generalized prediction model built from the existing drivers’ data represents a logical 
starting point, which is subsequently updated to a personalized version when new 
observations are available. This process was simulated using personalized models with 
different percentages of new observations. The results showed that the performance of 
the personalized models is significantly improved in predicting the new driver’s 
takeover performance when gradually adding about 50% of new observations into the 
training set. Moreover, it was found that 15 drivers’ data can generate a generalized 
model that ensures both generalization capability to the new driver and the potential of 
adapting to the personalized models. 
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Key Takeaways 

• A random forest (RF) machine learning approach led to the best model 
predictions in the current study. 

• Pre-takeover measurement windows of 9 to 14 seconds showed the highest 
model performance, with peak performance for the RF model occurring at 11 
seconds.  

• Galvanic skin response (GSR) indices were the most important measures in 
predicting driver performance, followed by heart rate indices.  

• Personalized models have great potential for increasing model accuracy in 
real-world implementations. 

• The novel measure of takeover performance, based on the Fréchet Distance 
(FD), considers both temporal and spatial characteristics and is therefore 
useful in capturing the timeliness and quality of takeover performance. 
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PART 2: Supporting Driver Attention During Takeover 

Part 2 sought to explore avenues to support driver attention during takeover events. It 
comprises two pieces: (a) identification of potential hazards that co-occur during driver 
takeover transitions and (b) the design and evaluation of a gaze guidance system to 
support drivers’ noticing of potential hazards during takeovers. The first exercise 
utilized naturalistic driving data from an existing database, the Integrated Vehicle-Based 
Safety System (IVBSS) program (Sayer et al., 2011). Ten types of potential hazards were 
identified using a grounded approach in situations where ADAS systems issued alerts to 
the driver related to nearby hazards. Researchers documented the co-occurrence of 
other nearby hazards (ones other than those that triggered the alert) that could 
conceivably impact driver responses to an alert or takeover situation. The second 
exercise comprised a driving simulator study aimed at designing and evaluating a gaze 
guidance system, based on a theoretical model of visual attention (Wickens, 2015). A 
human-in-the-loop experiment was conducted wherein drivers were exposed to various 
takeover scenarios with the support of one of two types of gaze guidance system (high 
and low salience).  

Identifying Potential Hazards During Takeover Events 

Prior research indicates that failures or degraded performance during takeover 
transitions are often not because drivers cannot detect the event causing the TOR, but 
because they have difficulty perceiving the surrounding traffic environment within a 
short period of time, the so-called “tunnel vision” problem (Zeeb et al., 2016). These 
nearby objects can become hazards depending on the maneuver chosen by drivers to 
mitigate the initial hazard event (e.g., swerving to avoid a vehicle ahead but colliding 
with a vehicle in the blind spot of the adjacent lane). Therefore, the goal of this study was 
to identify and document the prevalence potential hazards in the surrounding 
environment that could lead to takeover failures. It is important to note that the focus 
was not on the potential hazards that directly cause a TOR. Rather, of interest in the 
project were other potential hazards existing in the environment when a TOR is issued. 
For example, a TOR may be triggered by a slower lead vehicle, and the driver plans to 
change lanes to avoid a rear-end crash with the lead vehicle. However, at that moment, 
another vehicle may be located in the adjacent lane. Failing to detect the vehicle in the 
adjacent lane could lead to a collision. 

Due to the absence of a comprehensive naturalistic driving database for 
conditionally automated vehicles, data from the IVBSS program (Sayer et al., 2011), an 
existing naturalistic driving study, was utilized. Note that even though the IVBSS 
program only employed alerts and warnings from lower-level ADAS, such as forward 
collision warnings, the current exercise used these scenarios as proxies for situations 
where higher levels of automation are employed (e.g., Level 2 and Level 3 automation). 
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Method 

The IVBSS program was designed to build and test an integrated in-vehicle crash 
warning system that includes the forward crash warning, lane departure warning, curve 
speed warning, and lane change warning (Figure 8; Sayer et al., 2011). Sixteen Honda 
Accords (ego vehicles) were modified and equipped with seven radar sensors, including 
one long-range front-facing sensor working at 77 GHz and six sensors working at 24 GHz 
pointing at adjacent lanes. They were also equipped with a vision system that detected 
lane boundaries used to determine lane position (LeBlanc et al., 2011). A total of 108 
randomly sampled drivers used the test vehicles as a substitute for their personal 
vehicles over a 40-day period. The IVBSS database for light vehicles represents 213,309 
miles, 22,657 trips, and 6,164 hours of driving (Sayer et al., 2011). 

 

Figure 8. IVBSS Technology (from LeBlanc et al., 2011). 

The integrated crash warning system was designed to issue the following 
warnings (Sayer et al., 2010): 

• Forward crash warning (FCW): Warns drivers of the possibility of a rear-end 
crash with another vehicle. 

• Lane-change/merge warning (LCM): Warns drivers of possible crashes with 
adjacent vehicles, or vehicles approaching in adjacent lanes. LCM includes a 
blind-spot detection (BSD) function. 

• Lateral drift warning (LDW): Warns drivers that they may be drifting out of 
their lane. 

• Curve speed warning (CSW): Warns drivers that they are traveling at an 
excessive speed and they may not safely negotiate an upcoming curve. 

A researcher randomly sampled videos for each type of warning from the IVBSS 
database. These videos were watched to identify common themes/situations that could 
be considered potential hazards. These common themes/situations were discussed 
among the research group to determine if they would be considered potential hazards 
according to the type of warning. Once a consensus was achieved, a coding rule was 
developed taking into account the type of warning and the possible maneuvers a driver 
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might undertake during the warning. Approximately 200 videos were randomly sampled 
from the IVBSS database for each warning type (duration of each video: 40 seconds). The 
following selection criteria were also applied: (a) a driver had to have at least 50 miles of 
driving data, (b) a driver was traveling at a speed of at least 25 mph during the video, 
and (c) the duration of continuous driving in the video was at least 30 seconds. The query 
resulted in 194 videos for FCW, 199 videos for LCM, 193 videos for LDW, and 211 videos 
for CSW, resulting in a total of 797 videos. 

Two researchers coded 240 out of the 797 videos independently and the inter-
rater reliability was calculated at 86.5%. After achieving this high inter-rater reliability 
score, one researcher coded the remaining 557 videos. 

Hazard Scenarios. This section presents the potential hazards and provides a 
brief description and a figure depicting the scenario. As noted, the potential hazards of 
interest are not the ones that cause the warnings (i.e., FCW, LCM, LDW, CSW). Instead, 
they are other potential hazards in the environment at the time of a warning. The 
different events and configurations are shown in Table 8 and the coding rules for these 
events can be found in Appendix A. 
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Table 8. Hazard scenarios configurations. 

Name Visualization Description 

Car in Blind Spot 
(FCW-BS) 

 

A FCW is issued because of the possibility of rear-
end crash between the ego vehicle (red) and the 
leading vehicle (blue). A vehicle in the blind spot 
(white) is a potential hazard because a possible 
maneuver of the ego vehicle is to change lanes. 

Car in the 
Adjacent Lane 
(FCW-AL) 

 

A FCW is issued because of the possibility of rear-
end crash between the ego vehicle (red) and the 
leading vehicle (blue). A car in the adjacent lane 
(white) within close proximity is a potential 
hazard because a possible maneuver of the ego 
vehicle is to change lanes. 

Car in Blind Spot 
After Changing 
Lanes (LCM-BSCL) 

 

A LCM is triggered as the ego vehicle (red) cuts 
into an adjacent occupied lane. A car in the blind 
spot (white) of the ego vehicle after the lane 
change maneuver is a potential hazard as a 
possible maneuver of the ego vehicle is to change 
lanes again. 

Car in Adjacent 
Lane After 
Changing Lanes 
(LCM-ALCL) 

 

A LCM is triggered as the ego vehicle (red) cuts 
into an adjacent occupied lane. After the lane 
change, a car in the adjacent lane (white) within 
close proximity to the ego vehicle is a potential 
hazard because a possible maneuver of the ego 
vehicle is to change lanes again. 

Car in Blind Spot 
in the Departed 
Lane  
(LCM-BSDL) 

 

A LCM is triggered as the ego vehicle (red) cuts 
into an adjacent occupied lane. After the lane 
change is completed, a car in the originally 
departed lane (white) within close proximity to 
the ego vehicle is a potential hazard because a 
possible maneuver of the ego vehicle is to change 
lanes again. 
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Car in the 
Opposite Direction 
(LDW-OD) 

 

A LDW is triggered as the ego vehicle (red) in the 
leftmost lane drifts of a two-way road and drifts 
to the left (i.e. to the lane in the opposite 
direction). A vehicle traveling in the opposite 
direction (blue) is a potential hazard having the 
possibility of causing a head-on collision. 

Car in the 
Adjacent Lane 
(LDW-AL) 

 

A LDM is triggered by the ego vehicle (red) 
drifting towards a lane in the same direction. A 
vehicle traveling in that particular lane (white) 
within close proximity to the ego vehicle is a 
potential hazard as a rear-end collision may 
occur. 

Car in Blind Spot 
(LDW-BS) 

 

A LDW is triggered by the ego vehicle (red) 
drifting towards a lane in the same direction. A 
vehicle traveling in that particular lane (white) 
and is in the blind spot of the ego vehicle is a 
potential hazard as a rear-end collision may 
occur. 

Car in the 
Opposite Direction 
(CSW-OD) 

 

A CSW is triggered because the ego vehicle (red) 
over speeds when entering a curve. A vehicle 
traveling in the opposite direction (white) is a 
potential hazard as the ego vehicle could lose 
control and go over the center line, causing a 
head-on or a side collision. 

Slower Lead 
Vehicle  
(CSW-SLV) 

 

A CSW is triggered because the ego vehicle (red) 
over speeds when entering a curve. A leading 
vehicle traveling in the same direction (white) 
with a slower speed is a potential hazard because 
the slower vehicle may not be fully visible before 
entering or at the beginning of the curve, causing 
a rear-end collision. 
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Results and Discussion 

Table 9 shows the overall summarized results of the categorization. Across category, the 
co-occurrence of the alert with another potential hazard ranged from 15.5% to 34.7% 
(with an overall rate of 24.3%). Co-occurrence was highest for lane change warnings 
(LCM), followed by forward collision warnings (FCW). In terms of specific situations, 
LCM-BSCL showed the most occurrences with 14.1% followed by FCW-BS and FCW-AL. 

Table 9. Categorization results from video samples. 

FCW (N = 194) LCM (N = 199) LDW (N = 193) CSW (N = 211) 
 Count %  Count %  Count %  Count % 

FCW-BS 25 12.9 LCM-BSCL 28 14.1 LDW-OD 10 5.2 CSW-OD 25 11.8 
FCW-AL 24 12.4 LCM-ALCL 20 10.0 LDW-AL 12 6.2 CSW-SVV 21 10.0 

   LCM-BSDL 21 10.6 LDW-BS 8 4.1    

Total 59 25.3 Total 69 34.7 Total 30 15.5 Total 46 21.8 
 

Nearly a quarter of the videos sampled in this exercise featured potential 
secondary hazards, underscoring the importance of considering these elements during 
takeover transitions. Regarding the specific types of potential hazards, vehicles in the ego 
vehicle’s blind spot were the most frequent situation overall. During the CSW warnings, 
vehicles in the opposite direction were also of particular concern, as they can lead to 
head-on collisions, which are the most fatal and represent the highest percentage of total 
fatal crashes (Insurance Information Institute, 2019). 

Design and Evaluation of a Gaze Guidance System 

The above exercise served to quantify and characterize the types of potential hazards 
that may exist in the surrounding traffic environment during takeover transitions. In 
this study, a gaze guidance system was designed and evaluated aiming to support the 
noticing of potential hazards. The gaze guidance system was motivated by the N-SEEV 
(Salience, Effort, Expectancy, Value) model of selective visual attention, focusing on the 
salience factor (Wickens, 2015). That is, the system was intended to cue or highlight 
important, safety-critical information for drivers in order to guide their attention to this 
information during their resumption of control from automation. Different levels of 
system salience were evaluated. Based on the potential hazards identified in previous 
section and considerations regarding the implementation in a simulator study, the FCW-
BS scenario was chosen for the current study. 
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Method 

Participants. A total of N = 12 participants (average age = 25.8 years, SD = 4.4 
years, 6 females, 6 males) with normal or corrected-to-normal vision participated in the 
experiment. Each participant received a payment of $30 for their participation. 
Participants had not participated in the study in Part 1.  

Apparatus and Stimuli. The same driving simulator and the same NDRT task as 
described in Part 1 were used for the current experiment. During the experiment, 
participants wore the Pupil Core Glasses eye-tracking system (Pupil Labs, Germany) that 
provided real-time gaze and pupil data at a sampling rate of 200 Hz. The vehicle was 
programmed to simulate the behavior of an SAE Level 3 automation, which handled the 
longitudinal and lateral control and navigation, and responded to traffic elements. 
Participants could press the button on the steering wheel to activate the automated 
mode, which was indicated by an auditory sound and a blue light on the dashboard. 
Whenever the AV reached its system limit, a take-over request, consisting of a spoken 
auditory warning (“Takeover”) and the disappearance of the blue light on the dashboard, 
was issued. 

Gaze Guidance System. Two versions of the gaze guidance system were 
evaluated, which varied by the salience of the cue (high salience or low salience). For 
both high and low salience conditions, the side mirror was highlighted with a red 
bounding box when a potential hazard (i.e., the blue vehicle) was located near the ego 
vehicle and was about to enter the blind spot of the ego vehicle at the moment of TOR. 
The potential hazard was programmed to drive at a fixed speed. Once the driver slowed 
down after hearing the TOR, the potential hazard vehicle would enter the blind spot of 
the ego vehicle and eventually bypass the ego vehicle (if there was no crash). In the high 
silence condition, the red box would flash 20 times over 4 seconds (5 Hz), whereas in the 
low salience condition, the red bounding box would appear for 4 seconds without 
flashing. 

     

Figure 9. Illustration of gaze guidance system: control condition (left), low salience guidance (right).  

Procedure. Upon arrival, participants provided informed consent and filled out a 
demographic survey. The participants were then given an introduction that describes the 
content of the experiment. Next, participants received a training session to get familiar 
with the driving simulator and the Tetris game. During the training, participants 
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practiced how to drive, change lanes, and engage/disengage in the automated driving 
mode. They were also presented with visual and auditory alerts for takeover requests. 
Participants were then asked to drive the simulator until they felt comfortable handling 
the simulator controls. After the training, participants were fitted with the eye tracker. 

Each participant experienced all three salience conditions (high salience, low 
salience, and control) and encountered three takeover events in the experiment. The 
three events are illustrated in Table 10 and Figure 10. The sequence of the three 
conditions was counterbalanced using a balanced Latin square design. 

Table 10. Descriptions of takeover events. 

Event Scenario Type Description 

1 Construction Ahead 
Urban two-lane road—construction blocking the lane (traffic 
cones and equipment) requiring that driver change lanes to 
the adjacent (vacant) lane.  

2 Police Officer  
Two-lane road—police officer is inspecting a vehicle 
partially obstructing the lane, requiring driver to change 
lanes.  

3 Stationary Bus Ahead Urban two-lane road—a bus is stopped unexpectedly in the 
lane ahead, requiring the driver to change lanes.  
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Figure 10. Illustration of takeover events: (a) construction ahead, (b) police vehicle on shoulder, (c) 
stationary bus ahead  

Each driving block began with the command to activate the automated driving 
mode was given. After that, there was an NDRT phase where participants were asked to 
play the Tetris game. Participants were informed that there was no need to monitor the 
environment when the AV was in automated driving mode. Once a TOR was issued, 
participants were required to take over control of the vehicle immediately. Participants 
were instructed to comply with all the traffic laws when they drove manually. They were 
informed that the speed limit was 35 mph. Participants could hand back the control to 
the AV after they negotiated the driving situation. When the AV was re-engaged, 
participants completed a brief subjective questionnaire verbally. At the end of the 
experiment, participants ranked their preferences for the three designs. 

Dependent Measures. Several dependent variables were measured including the 
occurrence of crash/near crash, noticing time of the potential hazard, and subjective 
measurements. Given the specific design of the experiment, a rear-end crash/near crash 
occurred when the ego vehicle tried to change lanes without noticing the hazard vehicle. 
There was no crash when the ego vehicle waited for the target vehicle to pass and 
afterward switched lanes. The noticing time of the potential hazard vehicle is the time 
taken for the driver to notice the hazard vehicle. It was calculated as the time between 
the issue of TOR and the first fixation on the side mirror (Figure 11).  
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Figure 11. Illustration of the first fixation on the side mirror. 

Additionally, participants’ perceived takeover readiness, their level of 
engagement in the NDRT before TOR, and their perceived usefulness and ease of use for 
the gaze guidance system were measured (Table 11). At the end of the experiment, 
participants were asked to rank their preference for the three designs (i.e., high salience, 
low salience, and control). 

Table 11. Subjective measures of perceived readiness, level of engagement, perceived usefulness, and 
ease of use for the gaze guidance system. 

Measure Questions or Items 

Perceived readiness How was your takeover performance? 
Level of engagement I was totally absorbed by the Tetris task before the takeover request. 

Perceived usefulness 

The gaze guidance system helped me recognize the situation around 
me. Using the gaze guidance system will improve my takeover 
performance. Using the gaze guidance system increases my safety 
during takeover transitions.  
Using the gaze guidance system enhances my effectiveness to take over 
control of the vehicle.  
I find the gaze guidance system to be useful during takeover transitions. 

Perceived ease of use 

The gaze guidance system is clear and understandable. 
Interacting with the gaze guidance system does not require a lot of 
mental effort.  
I find the gaze guidance system easy to use. 

Results 

The experiment used a one-way within-subjects design with the salience level (high 
salience, low salience, and control) as the independent variable. Table 12 shows the 
occurrences of crashes/near-crashes and the noticing time as participants encountered 
the three events. Despite the use of a Latin square design, there were significant learning 
effects as participants experienced more takeover events. Therefore, the current analysis 
focuses on the first event. 
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Crashes and Near Crashes. A χ2 test compared the likelihood of crashes/near 
crashes occurrence between the three salience conditions. The result showed a 
significant difference, χ2(2) = 6.0, p = .05; there was a lower likelihood of crashes/near 
crashes with the high salience design, compared to the low salience design and the 
control condition. 
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Table 12. Occurrence of crash/near crash and noticing time across participants and event. 

   

 Event 1 Event 2 Event 3 

Participant # Salience Crash Noticing 
Time (sec) Salience Crash Noticing 

Time (sec) Salience Crash Noticing 
Time (sec) 

1 High 0 4.04 Control 0 2.94 Low 0 1.34 
2 Low 1 – High 0 1.31 Control 0 1.18 
3 Control 1 1.83 Low 0 1.59 High 0 1.23 
4 Low 0 4.39 Control 0 4.03 High 0 2.73 
5 Control 1 1.80 High 0 1.87 Low 0 0.90 
6 High 0 0.84 Control 0 1.07 Low 0 0.89 
7 Low NC – High 1 1.86 Control 0 2.21 
8 Control 1 1.99 Low 0 1.46 High 0 1.07 
9 Low 1 – Control 0 1.10 High 0 0.66 

10 High 0 4.56 Low 0 2.24 Control 0 2.35 
11 High 0 1.14 Low 0 1.35 Control 0 1.66 
12 Control 0 3.01 High 0 1.76 Low 0 1.03 

Note: Crash: 1=Yes, 0=No, NC=Near Crash. 
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Noticing of Potential Hazard. A one-way repeated-measures analysis of variance 
(ANOVA) was used to compare the noticing time between the three conditions, which 
showed a non-significant difference (F(2, 6) = .98, p = .43). 

Subjective Ratings. Table 13 tabulates the mean and standard deviation (SD) of 
perceived readiness, engagement in NDRT, perceived usefulness, and perceived ease of 
use. Although the high salience condition showed nominally higher ratings of perceived 
readiness, usefulness, and ease of use, the one-way ANOVAs revealed non-significant 
differences (perceived readiness (F(2, 9) = 2.29, p = .16); engagement in NDRT (F (2, 9) = 
.00, p = .81); perceived usefulness (F(1, 6) = 1.34, p = .29); and perceived ease of use (F(1, 6) 
= 2.23, p = .12)).  

Table 13. Mean and SD of perceived readiness, engagement in NDRT, perceived usefulness, and 
perceived ease of use. 

 Perceived 
Performance 

Engagement in 
NDRT 

Perceived 
usefulness 

Perceived ease 
of use 

High salience 5.8 (1.9) 5.5 (2.4) 4.6 (1.2) 5.0 (1.2) 
Low salience 3.0 (1.4) 6.0 (2.0) 3.5 (1.7) 3.1 (1.8) 
Control 3.5 (2.4) 6.0 (1.6)   

 

Figure 12 shows the ranking of the three salience conditions (1st – most preferred, 
3rd – least preferred). a Friedman’s test shows a significant difference between the ranks 
(χ2(2) = 18.5, p < .001). The high salience design was preferred the most, followed by the 
low salience design and the control condition. 

 

Figure 12. Rankings of preferred system types. 
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Discussion 

The purpose of this study was to showcase the potential of a gaze guidance system in 
improving takeover readiness and performance. Despite the limited number of 
participants, the study yielded noteworthy findings. The high salience design 
significantly reduced the likelihood of crashes, with no incidents reported among 
participants in this group. In contrast, three crashes were observed in both the low 
salience and control conditions. The current analysis did not reveal a difference between 
the low salience and control conditions. Notably, three out of four participants in the low 
salience group failed to check the side mirror, suggesting that this version of the system 
was not sufficiently salient. This underscores the potential benefits of an attention-
grabbing mechanism to redirect the driver’s attention to the potential hazards. 
Furthermore, the participants’ evaluation indicated a trend in favor of the high salience 
condition, with higher perceived performance, usefulness, and ease of use compared to 
the low salience condition.  

Although this study was preliminary, this proof-of-concept study lays the 
foundation for future research and development in this area of driver support during 
takeover events. Attentional cueing and guidance is an effective means of highlighting 
task-critical information in the world. Further studies with larger sample sizes under a 
wider range of conditions are needed to further validate the current results. 
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General Discussion 

Vehicle automation continues to evolve and change the nature of the driver’s role, from 
an active operator to more of a system supervisor. However, when drivers are decoupled 
from the operational control of the vehicle, they often have difficulty taking back 
control—especially in situations that the automation is not able to handle (Zhou et al., 
2020; Petersen et al., 2019; Molnar et al., 2017). Thus, understanding how to monitor and 
support drivers during such takeover situations is imperative. The current set of studies 
aimed to provide insight into indices of driver takeover readiness as well as attentional 
support in executing a takeover. A number of high-level takeaways are highlighted 
and/or re-iterated: 

• In examining driver physiological data in real-time, a random forest (RF) 
machine learning approach led to the best model predictions. Driver state 
monitoring systems (and their underlying algorithms) should consider such 
approaches.  

• Pre-takeover measurement windows of 9 to 14 seconds showed the highest 
model performance, with peak performance for the RF model occurring at 11 
seconds. DSM systems should strive to incorporate and/or validate their own 
outcomes using such time frames. 

• Galvanic skin response (GSR) indices were the most important measures in 
predicting driver performance, followed by heart rate indices. As indicators of 
driver takeover readiness, these measures should be considered for inclusion 
in DSM systems as part of a suite of measures.  

• Personalized models have great potential for increasing model accuracy in 
real-world implementations. Generalized models that learn from new users 
have the potential to increase their accuracy and real-world utility.  

• The novel measure of takeover performance, based on the Fréchet Distance, 
considers both temporal and spatial characteristics and is therefore useful in 
capturing the timeliness and quality of takeover performance. 

• Gaze guidance (attentional) support is one viable approach to helping drivers 
during takeover events. More work and innovation in this area is merited. 
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Appendix A: Coding Rules for Hazard Alert Conditions 

Type Coding Rules 

Car in Blind Spot  
(FCW-BS) 
 

• The ego vehicle is approaching a lead vehicle and triggers an 
FCW 

• There is a car in the blind spot that triggers the blind spot signal 
during the time the alarm message is displayed before the ego 
vehicle changes lanes 

• Classify it as FCW-BS 

Car in the Adjacent 
Lane  
(FCW-AL) 
 

• There is a vehicle in the adjacent lane at the moment of a FCW 
• The vehicle is within close proximity to the ego vehicle, in 

between the leading vehicle causing the FCW and the ego vehicle 
• Classify it as FCW-AL 

Car in Blind Spot After 
Changing Lanes  
(LCM-BSCL) 
 

• LCM is triggered when the ego vehicle cuts into the adjacent lane 
• The blind spot signal (left blind spot if the ego vehicle switches to 

the left lane, right blind spot if the ego vehicle switches to the 
right lane) is activated due to the vehicle in the blind spot 

• Classify it as LCM-BSCL 

Car in Adjacent Lane 
After Changing Lanes 
(LCM-ALCL)  
 

• An LCM is triggered when the ego vehicle cuts into the next lane 
• After the lane changing maneuver is completed, there is a car in 

the adjacent lane (left lane if the ego vehicle switched to the left 
lane, right lane if the ego vehicle switched to the right lane) 

• Rear portion of the car overlaps with the ego vehicle 
• Classify it as LCM-ALCL 
OR 
• An LCM is triggered when the ego vehicle cuts into the next lane 
• After the lane changing maneuver is completed, there is a car in 

the adjacent lane (left lane if the ego vehicle switched to the left 
lane, right lane if the ego vehicle switched to the right lane) 

• Apply a 2 seconds rule from the time the hazard signal appears; 
the car is within 2 seconds and is traveling slower than the ego 
vehicle. 

• Classify it as LCM-ALCL 

Car in Blind Spot on the 
Departed Lane  
(LCM-BSDL) 

• An LCM is triggered and the ego vehicle cuts into the next lane 
• The blind spot signal is activated by the car in the previous lane 
• Classify it as LCM-BSDL 

Car in the Opposite 
Direction  
(LDW-OD) 

• An LDM is triggered by the ego vehicle drifting towards the 
boundary between ego vehicle’s lane and those in the opposite 
direction (e.g., double yellow lines) 

• There is a car traveling in the opposite direction on the lane the 
ego vehicle is drifting toward during LDM 

• Classify it as LDW-OD 
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Car in the Adjacent 
Lane  
(LDW-AL) 
 

• An LDW is triggered by the ego vehicle drifting to an adjacent 
lane in the same direction 

• There is a car in the adjacent lane (left if the ego vehicle drifts to 
the left, right if the ego vehicle drifts to the right) 

• Any portion of the car overlaps with the ego vehicle 
• Classify it as LDW-AL 
OR 
• An LDW is triggered by the ego vehicle drifting to an adjacent 

lane in the same direction 
• There is a car in the adjacent lane (left if the ego vehicle drifts to 

the left, right if the ego vehicle drifts to the right) 
• Apply a 2 seconds rule from the time the drift signal appears; the 

car is within 2 seconds and is traveling slower than ego vehicle 
• Classify it as LDW-AL 

Car in Blind Spot  
(LDW-BS) 
 

• And LDW is triggered by the ego vehicle drifting to an adjacent 
lane in the same direction 

• A car in the lane to which the ego vehicle is drifting triggers the 
blind spot signal 

• Classify it as LDW-BS 

Car in the Opposite 
Direction  
(CSW-OD) 
 

• The ego vehicle is traveling fast while approaching/handling a 
curve and triggers the alarm 

• There is a car traveling in the opposite direction when the alert is 
visible 

• Classify it as CSW-OD 

Slower Lead Vehicle  
(CSW-SLV) 
 

• A CSW is triggered when the ego vehicle enters a curved road 
• The ego vehicle does not break and there is a lead vehicle on the 

curve road traveling slower than the ego vehicle 
• Classify it as CSW-SLV 
OR 
• A CSW is triggered when the ego vehicle enters a curved road 
• The ego vehicle brakes during the alarm and the lead vehicle in 

the curve is traveling slower than the ego vehicle during the 3 
seconds before the brake. 

• Classify it as CSW-SLV 
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