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Foreword 

One of research focus areas for the AAA Foundation for Traffic Safety is ‘Emerging 
Technologies,’ which examines drivers’ understanding, acceptance, and use of emerging 
vehicle technologies, the benefits of their use, as well as risks that might arise from 
misunderstanding or misuse of these technologies. The availability of new technologies 
continues to expand in production vehicles and in the U.S. fleet. Features such as 
adaptive cruise control and lane centering assist are taking on more active control of 
driving tasks under drivers’ supervision. However, past research has shown that drivers 
often misunderstand the purpose, capabilities, and limitations of these features, which 
could potentially have critical safety implications. Being able to measure or infer driver’s 
understanding of the technology on their vehicles–and by extension, measure the 
efficacy of different training and education efforts–is an important area for further 
development.  

This technical report summarizes a study appraising different classes of outcome 
measures and examining in an experimental setting how different measures map onto 
the understanding of advanced driver assistance systems. The results should be 
informative to researchers, the automobile industry, and government entities.  

This report is a product of a cooperative research program between the AAA 
Foundation for Traffic Safety and the SAFER-SIM University Transportation Center.  

 

 

C. Y. David Yang, Ph.D. 

President and Executive Director 
AAA Foundation for Traffic Safety 

 

Dawn Marshall 

SAFER-SIM Director 
National Advanced Driving Simulator 

The University of Iowa 
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Executive Summary  

Advanced vehicle technologies have the potential to improve safety and 
convenience for drivers; however, in order to realize these benefits, it is important that 
drivers use the systems appropriately. Past research has documented gaps in drivers’ 
understanding of how new technology works and when it should be used. It follows that 
the interplay between a driver’s knowledge, performance and safety outcomes, and 
approaches for training and education have become topics of interest in the research 
and stakeholder communities. One area needing further exploration is the relationship 
between a driver’s knowledge of the system and a wide variety of performance and 
safety outcome measures.  

The main objective of this study was to identify and appraise outcome measures 
that could be used to assess or infer a driver’s knowledge of advanced vehicle 
technologies and, by extension, the effectiveness of training and education on these same 
technologies. The study focused on drivers’ knowledge of adaptive cruise control (ACC), a 
technology that is currently deployed and widely available. The study was comprised of 
two parts: (a) a review, enumeration, and appraisal of measures of performance, safety, 
and behavior that potentially bear on knowledge of advanced vehicle technology, and (b) 
an experimental study to explore and validate outcome measures that can be 
implemented in research or other settings to measure drivers’ knowledge and 
understanding of advanced vehicle systems.  

For Part 1, a gathering and cataloging of behavioral, performance, and safety 
measures was carried out through complementary tasks, including a scan of relevant 
literature and engineering standards. Outcomes from this scan were augmented with 
information gleaned from several available datasets. Additionally, a workshop was 
convened with subject matter experts to discuss a variety of topics related to education, 
training, and measurement. Based on the combined tasks, the universe of measures was 
refined and consolidated into a matrix of outcome measures, which documented 
different properties of the measures along with an appraisal of the advantages and 
disadvantages relative to their implementation in the context of driver’s knowledge of 
vehicle technology. The main takeaway from Part 1 is that the measures vary greatly in 
terms of their implementation and complexity and each category or measure has 
advantages and disadvantages with respect to its relevance to system knowledge and to 
training and education. The use of combinations or clusters of outcome measures would 
offer stronger and more stable insights into a driver’s underlying knowledge, accounting 
for some of the inherent shortcomings of just a single measure or class of measures.  

For Part 2, a driving simulator study was executed at two different sites using a 
common approach, scenarios, and measures. The purpose was to identify and validate 
outcome measures that can be implemented to measure drivers’ knowledge and 
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understanding of advanced vehicle systems. The selection and inclusion of outcome 
measures was guided by Part 1, as well as by practical constraints of the experimental set 
up. Sixty-five participants completed the study across both sites, using an ACC system in 
a variety of driving conditions, including takeover scenarios, non-takeover scenarios, 
and during system interactions (e.g., changing settings), among others.  

A machine learning approach was used to assess the effectiveness of different 
outcome variables in predicting driver knowledge of vehicle technology. The models 
highlighted the variables most strongly related to a driver’s knowledge of ADAS and how 
these varied by measurement window; in particular, measurement windows or epochs 
that involved system interactions, control takeovers, or routine situations where the 
system is operating showed stronger outcomes in the modeling exercise.  

Measures of eye glance behavior also featured prominently in all of the relevant 
models. This outcome corroborated some of the perspectives gleaned from Part 1, noting 
the advantages of eye glance metrics in mapping onto a driver’s roles and 
responsibilities while using the technology. With respect to measures of vehicle control, 
some constraints were noted in Part 1 regarding their use as these measures are often 
impacted by many other factors. This too was evident from the experimental study, with 
vehicle control and related safety measures not showing as prominent components of 
the models in most cases. The noteworthy exception was in cases where active vehicle 
control was necessary (i.e., takeover scenarios).  

Ultimately, employing a cluster of measures is advised in order to account for 
some of the limitations associated with individual measures. However, in cases where 
there are constraints in what types of information can be gathered or weighed, 
researchers and other stakeholders should do the following: 

● Prioritize measures of eye glance behavior to corroborate a driver’s knowledge of 
the vehicle system. Vehicle control and safety measures are more effectively 
applied in specific edge-case or takeover situations. 

● Establish measurement windows around system interactions (e.g., changing 
system settings), system takeovers or disengagements, and normal system 
operation where the system is activated. 

● Leverage subjective measures such as confidence or technology acceptance 
whenever possible, which are strong predictors of knowledge.  

● Incorporate or consider information about the driver, such as driving experience 
and demographics.  
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Introduction  

Advanced vehicle technologies—from Advanced Driver Assistance Systems 
(ADAS) to different forms of vehicle automation—are becoming more prominent in the 
passenger vehicle fleet. These technologies are designed to improve convenience and 
safety for drivers (e.g., Bengler et al, 2014; Fisher et al., 2020); however, to reap these 
benefits, it is important that drivers use the systems appropriately. That is, systems that 
take on more of the driving task, such as adaptive cruise control (ACC) and lane 
centering assist (LCA), should only be used in appropriate situations and environments, 
and with clear and accurate knowledge about what the systems can and cannot do. Thus, 
there is significant interest and importance in examining the mapping of advanced 
vehicle technologies on drivers’ understanding of the technology. This is especially 
important in situations that are outside or nearing the limits of a system’s operational 
design domain (ODD), which define the conditions under which a system is safe to 
operate.  

There are multiple contemporary research efforts being undertaken to better 
understand the benefits, risks, and human factors issues arising from these technologies 
(e.g., Yang et al., 2023; Naumann et al., 2023). Several studies have examined the 
correspondence between a driver’s knowledge of advanced technologies and the manner 
in which they interact with the system or their relative safety when using the technology. 
For example, Gaspar et al., (2020) documented performance deficits in certain scenarios 
for drivers that had a poorer mental model of ACC, which is a reflection of the driver’s 
knowledge or understanding of the system, compared to drivers that had a more 
complete understanding of the system. The deficits in drivers’ understanding of 
technology observed by Gaspar et al. (2020) and by others (e.g., McDonald et al., 2018; 
Lenneman et al., 2020; Forster et al., 2019) have helped underscore the need to examine 
approaches to mitigate these gaps. Training and education are one such avenue towards 
accelerating users’ understanding of vehicle technologies and, ideally by extension, 
increasing their safe and appropriate use. 

A number of studies have examined how different types of information or 
training approaches can shape system knowledge (e.g., DeGuzman & Donmez, 2022; 
Forster et al., 2019; 2020; Singer & Jenness, 2020). Such evaluations have employed a 
wide variety of approaches as well as a variety of metrics, including direct knowledge 
tests, driver behaviors and performance, safety and driving outcomes, a variety of 
subjective and physiological measures, and other outcome measures. What is less clear is 
the relationship between this array of measures and knowledge of vehicle technology. 
For example, what measures change (ameliorate or degrade) with different levels of 
system knowledge? Identification and evaluation of measures that can help to bridge the 
gap between knowledge and a variety of performance and safety outcomes will be 
essential for understanding the effectiveness of training or education interventions.  
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Objective 

The main objective of this study was to identify and appraise outcome measures 
that could be used to assess or infer knowledge of advanced vehicle technologies and, by 
extension, the effectiveness of training and education on these same technologies. The 
study focused on drivers’ knowledge of ACC, a technology that is currently deployed and 
widely available. Where relevant, the implications of study outcomes for other forms of 
ADAS and for higher levels of automation are discussed.  

The study was conducted in two parts, which are described in the following 
sections: 

• Part 1: Cataloging Measures of Behavior, Performance, and Safety—
Enumerate and catalog measures of behavior, performance, and safety in the 
driving domain that potentially bear on knowledge of advanced vehicle 
technology. This effort was grounded in a review of the scientific literature, 
engineering standards, and existing datasets, and through solicitation of input 
from domain experts. 

• Part 2: Experimental Study—Identify and validate outcome measures that can 
be implemented in research to measure drivers’ knowledge and understanding of 
advanced vehicle systems using a multi-site experimental approach. A driving 
simulator study was executed at two different sites using a common approach, 
scenarios, and measures.  

Part 1: Cataloging Measures of Behavior, Performance, and Safety 

The gathering and cataloging of behavioral, performance, and safety measures 
was carried out through three complementary and concurrent approaches. Researchers 
conducted a scan of relevant literature as well as engineering standards. Outcomes from 
this scan were augmented with information gleaned from several datasets gathered in 
recent and related studies from the University of Massachusetts–Amherst Human 
Performance Laboratory (HPL) and partner universities at the SAFER-SIM University 
Transportation Center (UTC). Additionally, a workshop was convened with several 
subject matter experts to discuss a variety of topics related to education, training, and 
measurement.  

Based on the combined tasks, the universe of measures was refined and 
consolidated into a matrix of outcome measures. The matrix documented different 
properties of the measures along with an appraisal of the advantages and disadvantages 
relative to their implementation in the context of knowledge of vehicle technology. A 
subset of subject matter experts from the workshop provided additional feedback on the 
matrix.  
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Literature, Standards, and Dataset Review 

Literature searches were conducted using the Transportation Research 
International Documentation (TRID) database, as well as Google Scholar. Articles 
appearing in journals, conference proceedings, and technical reports in English were 
considered for inclusion. Search terms included various combinations of keywords, such 
as driver or driving, training or education, automation, ADAS, adaptive cruise control, or 
lane keeping assist, and other like terms.  

The initial search yielded an expansive list of articles of over 5000 articles. The 
titles and abstracts of the articles were then screened by the research team for relevance. 
A final set of 49 articles was compiled and downloaded for further review. Study details, 
along with features and characteristics of the measures were extracted into a table for 
further processing.  

Standards documents were also identified in the searches. Additionally, known 
standards from sources such as the Society for Automotive Engineers (SAE; e.g., J2944, 
J2396) and the International Organization for Standardization (ISO) were also reviewed.  

Lastly, outcome variables gathered in the datasets from six recent studies by the 
University of Massachusetts–Amherst HPL and some universities in the SAFER-SIM UTC 
were reviewed for any additional data elements that could be considered in the data 
catalog.  

A comprehensive list of over 120 variables was drawn from the collective sources. 
The measures included performance and driving outcomes, physiological indices, 
subjective ratings, as well as measures of driver knowledge. Many variables were similar 
or related and so the research team went through an iterative process to group or 
categorize measures into a more finite matrix (described below).  

Subject Matter Expert Workshop 

A 3-hour in-person workshop was convened on January 8, 2023, to solicit input 
from a group of subject matter experts concerning driver knowledge, education, and 
training in the context of advanced vehicle technologies, as well as regarding issues 
surrounding measurement. The workshop included two experts from academia, one 
from industry, and one from the government (as well as the research team). Following 
the welcome and a general discussion, the group entertained a round table discussion on 
current and future measures to evaluate the effectiveness of consumer education and 
the assessment of different measures.  
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The experts volunteered a number of both specific and broad categories of 
measures that could be useful in this space. These included the following: 

• Measures of system interactions, including but not limited to observations as to 
whether drivers are using the systems when they should. This could also 
encompass basic information about system usage (% use, frequency of use), 
whether drivers can accurately turn on the system, etc.  

• User experience (UX)-type measures, including satisfaction and quality of 
interactions. Such measures can be examined in light of individual differences 
across user groups.  

• Driver knowledge itself, as a direct measure, as an important outcome.  
• Eye glance behavior, both during initial system use but also as drivers become 

more familiar with the system. Similarly, head position might be a useful proxy 
for some elements of glance behavior and would be easier to implement.  

• Strategy as an outcome measure, or why drivers choose or choose not to use the 
system.  

• Pre- and post-event behavioral measures, regardless of whether the event was 
positive (e.g., system acted as it was supposed to) or negative (e.g., system failed to 
do something it was supposed to).  

• Various measures gathered through the course of training might be informative, 
such as click throughs on training content or other indices of engagement.  

• Composite measures might be feasible to define different driver profiles or levels 
of at-risk drivers, though what measures compose such a composite remain open.  

Though not an outcome measure per se, the inclusion of contextual information 
was considered to be highly beneficial in support of other performance and safety 
measures. The experts also flagged some important corollary issues that are worthy of 
consideration.  

• Understanding what is intended by education and training (i.e., how to 
operationalize these terms). While people often use the terms interchangeably, 
they carry different connotations with different stakeholders. For example, 
original equipment manufacturers (OEMs) tend to not be in favor of using 
training from a liability standpoint. They also noted that there could be challenges 
dissociating effects due to training and education from those due to exposure 
alone.  

• In some cases, drivers can reap the benefits of technology without necessarily 
understanding it (e.g., where design is also a factor); that is, appropriate system 
use (and positive downstream safety outcomes) might be realized even if there is 
a potential mismatch in knowledge.  

• Importance of how system understanding evolves with experience with the 
system and based on the types of feedback drivers receive from the system. Along 
these lines, there should be a balanced consideration of immediate outcomes 
versus lagging or downstream indicators.  
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• There are some circumstances where knowledge could lead to worse outcomes, 
say in the case of deliberate circumventing of known system limits (e.g., knowing 
how to “game” a driver monitoring system). Similarly, for some measures, it might 
be difficult to discern poor performance from willful disregard or poor 
comprehension. 

• Though not without challenges, certain outcome measures could be tracked over 
the long term; in that sense, vehicles could host a personalized history of the 
driver along with driving and event data. This could capture trends and changes 
in behavior and safety over time, including adaptation.  

• It is important to not only look at candidate measures, but to appraise how 
feasible it is to incorporate them into production vehicles.  

• The transfer of training from one system or vehicle type to another is generally 
not well understood in this space.  

• There is a need to consider who is using the data and for what purpose; for 
example, researchers, driving instructors, DMVs, advocates, etc. 

The information gleaned from the experts helped to reinforce a number of the 
outcomes identified in the literature, standards, and dataset reviews. It also helped to 
expose some new dimensions of potential importance, including more outcomes or 
derivations related to system interactions and UX measures, as well as a number of 
different lenses through which the outcome measures should be considered.  

Behavioral, Performance, and Safety Measures 

As noted above, a list of over 120 variables was drawn from the various sources. 
The measures included performance and driving outcomes, physiological indices, and 
subjective ratings, as well as measures of driver knowledge. Based on input from the 
expert workshop, other indices related to system interactions and UX were incorporated 
as well as a number of dimensions along which each measure was weighed.  

Many variables were similar or related. In order to simplify the universe of 
measurements and related discussion, the research team engaged an interactive process 
wherein they discussed and distilled outcomes from the main matrix into broad 
categories. Lastly, the subject matter experts from the workshop were solicited for some 
additional input regarding the matrix, leading to some additional changes. The final 
matrix is shown below in focused form (with the full, expanded version available in 
spreadsheet format here).  

The matrix delineates nine categories of outcome measures:  

• Control transitions: measures related to the transition of vehicle control or 
partial control from the automation to the driver or vice versa 

• System interactions: measures related to system use (e.g., how and when the 
system is used, when system settings are adjusted) 

http://aaafoundation.org/wp-content/uploads/2024/09/202410-AAAFTS-Drivers-Knowledge-VA-Expanded-Outcome-Measure-Matrix.xlsx
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• Vehicle control: measures related to the lateral and longitudinal control of the 
vehicle 

• Safety events: critical incidents, including crashes or near misses  
• System understanding: measures of knowledge or confidence in knowledge  
• Attitudes and perceptions: acceptance, trust, and behavioral intentions towards 

automation, among other subjective measures  
• Workload: measures related to the level of mental or physical effort required or 

stress experienced when interacting with the system 
• Usability: measures of user experiences and satisfaction 
• Attention: measures of attention allocation and engagement with different tasks  

Under each category, a number of sample or representative measures are listed. 
In some cases, the sample measures themselves represent an array of related measures. 
For example, measures of lane position can be reflected by many specific measures, such 
as standard deviation of lane position, root mean square error, and the like.  

For each category or sample measure, the matrix further details the complexity of 
the measure (how challenging it would be to instrument and gather these measures), the 
context or under what conditions the measure might be assessed, and whether the 
measure is specific to a unique circumstance or use-case scenario. Advantages and 
disadvantages of the measure are provided in relation to its utility for appraising 
knowledge or the impact of education and training. Lastly, the full matrix (link) 
identified the timing of the measure relative to driving; whether the measure maps onto 
skills, rules, or knowledge (SRK; based on Rasmussen’s (1983) framework); if training 
could conceivably target the measures; and the expected impact of training on the 
outcome. 

 

 

http://aaafoundation.org/wp-content/uploads/2024/09/202410-AAAFTS-Drivers-Knowledge-VA-Expanded-Outcome-Measure-Matrix.xlsx
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Category Measure Context Complexity Pros Cons 
C

on
tr

ol
 T

ra
ns

iti
on

s 

Accuracy or success in 
situations where drivers 
takeover control from 
automation (e.g., successful 
takeover/deactivation counts 
or rates) 

Situations involving a state 
change, where the 
automation is engaged or 
disengaged 

Complex, depending on 
necessary sensors and 
operational setting as well 
as clear criteria to define 
success. 

- Used extensively in automation research, allowing for 
comparison 
- High face validity with respect to training; i.e., direct 
mapping to certain functions provided by automation 
(e.g. ADAS and ACC functions) 
- Shown in past studies to be sensitive to differences in 
level of understanding in some use cases (Gaspar et al., 
2020) 
- Can be monitored indefinitely (depending on 
implementation) 

- Impacted by other factors outside of education/training 
(e.g., experience, vehicle automation technologies, 
implementation) 
- Past use in other studies is not necessarily indicative of 
a good measure 
- Unknown if sensitive to differences in training and in 
what situations and on what time horizon (i.e., how 
proximal to training) Quality of a control takeover 

(e.g., response time, 
smoothness of control, 
duration) 

Situations where control 
returns to driver (e.g., 
system edge cases) 

Moderate, depending on 
necessary sensors and 
operational setting 

Driver-initiated 
disengagement of system in 
situations where it can 
operate safely (e.g., 
frequency) 

Situations involving a state 
change, where the 
automation is disengaged 

Simple, depending on clear 
mapping of system 
capabilities and conditions; 
however, could be complex, 
if details of the context are 
required to define 'necessity' 

- Errors can be related to Skills-Rules-Knowledge  
- High face validity with respect to training 
- Measuring errors is a standard assessment approach 
- Expert (human) assessments possible without 
'processing' data 
-This, along with system use, might be an index of the 
value of the technology to the user 

- Not frequently used in safety literature  
- Relates to system performance as opposed to safety 
outcomes (though error-prone systems are likely to 
correlate with safety)  
- Could be challenging to operationalize what is 
considered 'unnecessary' 

Efficiency or success in 
handing off control from 
driver to system 
(appropriate/timing of 
system engagements; failure 
to engage properly) 

Situations involving a state 
change, where the 
automation is engaged 

Simple, depending on clear 
understanding of system 
capabilities in relation to 
current conditions 

- Quality of handoffs can be related to Skills-Rules-
Knowledge  
- High face validity with respect to training 

- Requires precise/careful definition and criterion 
- Limited by availability of systems (e.g., ODD) 
  

Sy
st

em
 In

te
ra

ct
io

ns
 

Accuracy of system 
interactions, other than 
control transitions (e.g., error 
rate) 

Situations involving a 
change to system settings 

Simple, with knowledge of 
current and desired system 
state or setting 

- Errors can be related to Skills-Rules-Knowledge  
- High face validity with respect to training 
- Measuring errors is a standard assessment approach 
- Expert (human) assessments possible without 
'processing' data 

- Not frequently used in safety literature  
- Relates to system performance as opposed to safety 
outcomes (though error-prone systems are likely to 
correlate with safety)  
- Measures such as error rate alone might not capture 
the impact of different types of errors on performance or 
safety 

Driver position and posture 
(e.g., frequency/rate of 
hands/feet hovering near 
controls, body position) 

Normal system operation 
and/or state transitions 

Simple, provided clear 
criteria are established; 
however, can be labor 
intensive depending on 
coding approach 

- Used extensively in transportation safety research, 
allowing for comparison 
- Can be monitored indefinitely (depending on 
implementation) 

- Impacted by other factors outside of education/training 
(e.g., driver characteristics, fatigue, trust in technology, 
driving duration, traffic situation)  
- Unknown if sensitive to differences in training 
- Difficult to operationalize and code 

System use (e.g., % time 
system engaged, frequency) 

All driving conditions 
(manual and system) 

Simple, depending on the 
denominator (i.e., total trip 
time versus time system is 
available for use) 

- Use can be related to Skills-Rules-Knowledge  
- Moderate face validity with respect to training 
-This, along with system disengagements, might be an 
index of the value of the technology to the user 
- Could be parsed according to safe/appropriate use 

- Not frequently used in literature  
- Can be dependent on factors outside of 
education/training (e.g., trust, experience, whether 
automation system is available to be used [system 
ODD]) 
- Unknown if sensitive to differences in training 
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Category Measure Context Complexity Pros Cons 
Ve

hi
cl

e 
C

on
tr

ol
  

Speed and speed variance, 
acceleration (e.g., 
maximum, SD) 

Normal system operation 
and/or state transitions  

Simple, depending on 
available data 

- Used extensively in transportation safety research, 
allowing for comparison 
- Can be monitored indefinitely (depending on 
implementation) 
- Continuous measurement in normal conditions can 
offer insight into routine system use  
- Edge-cases shed insight into handling and resolution of 
critical events 
-Many of these measures can be leading indicators of 
safety 

- Impacted by other factors outside of education/training 
(e.g., speed limit, road type, traffic level, driving style, 
experience)  
- For certain measures, clarity regarding who is 
controlling or accountable for a given outcome might be 
needed (i.e., driver or the automation) 
- Low face, construct, and content validity with respect to 
education/training (depending on the implementation) 
- Unknown if sensitive to differences in training (e.g., 
criterion validity) 

Headway (e.g., 
time/distance, min. time-to-
collision, SD headway)  

Lane position (e.g., 
SD/RMSE of lateral position, 
max deviation) 

Steering (e.g., SD steering 
position, max. steering, 
steering entropy) 

Sa
fe

ty
 E

ve
nt

s 

Crashes (e.g., presence, 
rates) 

Normal system operation 
and/or state transitions 

Simple, depending on 
sensors and available data - Used extensively in safety research, allowing for 

comparison 
- Critical metrics in influencing policy, practice, etc. 
- Can be monitored indefinitely (depending on 
implementation) 
- Continuous event monitoring can offer insight into 
routine system use and edge-case situations 
- Can and should be examined along with measures of 
transitions of control, noted above 

- Impacted by other factors outside of education/training 
(e.g., experience, skills, traffic situation)  
- Low face, construct, and content validity relative to 
training (depending on the implementation) 
- Unknown if sensitive to differences in training 
- Such events range from rare to extremely rare; 
gathering sufficient data requires an effort to scale 

Near misses  
Complex; requires clear 
criteria and is difficult to 
capture 

Lane departure (e.g., 
presence, rates) 

Simple, depending on 
sensors and available data 

Sy
st

em
 U

nd
er

st
an

di
ng

 

Confidence in knowledge 

Questions can relate to 
general use or specific use 
cases 

Simple 

- Focused exclusively on driving automation 
- Strong face and construct validity with respect to 
education/training 
- Potential for good content and criterion validity (i.e., 
can be standard against which other measures are 
examined) 
- Administration can be recurring  
- Assessment is immediate 
- Can be done in situ with real time probes 
- Examining confidence and knowledge together can 
add another dimension to the data (given possible 
co-variation) 

- Subjective assessment may not correspond to actual 
behavior or specific safety benefits  
- No common or standard survey tool (i.e., threats to 
content and criterion validity)  
- Surveys can be long  
- Single assessment does not capture evolution of 
mental model over time  
- Depending on how administered, not sensitive to 
knowledge gained in training versus a priori knowledge  
- Currently many different survey instruments exist 
(which could be a pro as well) 

Knowledge assessment 

A
tti

tu
de

s 
an

d 
Pe

rc
ep

tio
ns

 

Acceptance of technology 
(e.g., intentions to 
use/planned adoption, 
affinity for technology, 
perceived usefulness) 

Questions can relate to 
general use or specific use 
cases 

Simple 

- Acceptance of, intentions to use, and perceived utility 
are likely related to knowledge of technology 
- Assessment is immediate 
- Some constructs grounded in Theory of Planned 
Behavior 

- Impacted by other factors outside of education/training 
(e.g., age, experience, tech savviness)  
- Low face, construct, and content validity relative to 
training (i.e., not to confuse with knowledge itself) 

Trust or confidence in 
technology 

Questions can relate to 
general use or specific use 
cases 

Simple 

- Trust and confidence in technology are likely 
connected to knowledge of technology 
- Frequently used/cited in driving automation research 
- Assessment is immediate 

- Impacted by other factors outside of education/training 
(e.g., age, experience, tech savviness)  
- Low face, construct, and content validity relative to 
training (i.e., not to confuse with knowledge itself) 
- Trust is multifaceted; different metrics and approaches 
exist 

Attitudes towards training 
(e.g., preferred learning 
method; evaluation of 
training) 

N/A Simple 
- Adopting preferred or highly rated approach might 
increase likelihood of training, though does not bear on 
knowledge directly 

- Impacted by other factors outside of education/training 
(e.g., age, experience, learning style)  
- Unclear association with knowledge gleaned through 
training/education   
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Category Measure Context Complexity Pros Cons 
W

or
kl

oa
d 

 

Subjective ratings of 
workload or stress (e.g., 
Rating Scale of Mental 
Effort, NASA-TLX)  

Normal system operation 
and/or state transitions Simple 

- Standardized metric  
- Easy to administer 
- Index of driver capacity 
- Assessment is immediate  
- Frequently used in transportation safety/human factors 
research  
- Can be particularly helpful to measure drivers' 
workload following critical events 

- Subject to significant noise and potential bias  
- Impacted by many extraneous situational and 
individual factors  
- Challenging to measure in situ in operational settings 

Physiological measures of 
workload and arousal (e.g., 
cardiac metrics—HR 
variability, root mean square 
of successive differences 
(RMSSD); pupil metrics—
pupil diameter, blink 
frequency; galvanic skin 
response) 

Normal system operation 
and/or state transitions 

Moderate, requiring 
specialized sensors and 
synchronization to other 
sources of data or to the 
driving environment 

- Standard and objective measurement  
- Extensive literature  
- Can be particularly helpful to measure drivers' 
workload around the critical events 

- Measurement burden/intrusive to measure  
- Subject to significant noise 
- Impacted by many extraneous situational and 
individual factors 

Brain Activity (e.g., 
electroencephalography 
(EEG); cerebral 
hemodynamics/oxygenated 
hemoglobin (Oxy-Hb)) 

Normal system operation 
and/or state transitions 

Complex, requiring highly 
specialized and intrusive 
sensors and synchronization 
to other data sources or the 
driving environment 

- Relatively novel in driving studies, but extensive 
research in other domains  
- Can be particularly helpful to measure drivers' 
workload around the critical events 

- Measurement burden/intrusive to measure 
- Subject to significant noise and can be difficult to 
interpret 
- Highly specialized, requiring expertise 
- Impacted by many extraneous situational and 
individual factors 

U
sa

bi
lit

y Usability survey or scale 
(e.g., System Usability Scale 
(SUS); User Experience 
Questionnaire, (UEQ)) 

Questions can relate to 
general use or specific use 
cases 

Simple - Used extensively in computer science/HCI research  
- Standardized scales available 

- Impacted by other factors, such as system/human-
centric design  
- Not necessarily influenced by education/training  

A
tte

nt
io

n 

Attention allocation (e.g., 
% distribution of glances to 
areas of interest (AOIs); on-
road/off-road glances, total 
eyes-off-road time, glance 
counts to AOIs) Normal system operation 

and/or state transitions 

Moderate, requiring 
specialized equipment and 
capabilities to post-process 
data, as well as means to 
define critical regions of 
interest using global 
coordinates (for AOIs) 

- Used extensively in transportation safety research, 
allowing for comparison 
- Maps onto driver responsibility to be attentive while 
using some types of automation 
- Can be monitored indefinitely (if implemented) 
- For some use cases, head movements might be 
reasonable proxy for eye movements. 

- Impacted by other factors outside of education/training 
(e.g., experience, situational factors, driver state, 
presence of secondary tasks)  
- Measurement burden, difficulties in tracking some 
individuals 
- Modest face, construct validity with respect to 
education/training (depending on implementation); low 
content validity 
- Unknown if sensitive to differences in training 
- Requires precise definitions of AOIs (i.e., glance 
durations to "what"—whether forward roadway or 
elsewhere) 

Glance metrics (e.g., mean 
duration, SD, max. duration, 
proportion of long glances, 
frequency, glance rates, 
time to return to roadway) 

Engagement in non-driving 
related tasks (NDRT) (e.g., 
frequency, duration) 

Normal system operation 
and/or state transitions 

Moderate, depending on 
desired precision of 
measures (e.g., task = yes 
or no versus time on task) 

- Widely used in studies of vehicle automation;  
- NDRT engagement may serve as a surrogate for 
knowledge/trust. 

- Impacted by other factors outside of education/training 
(e.g., age, experience, traffic conditions) 
- Need to consider the nature of the NDRT as tasks are 
not equivalent 
- At higher levels of automation, NDRT is permitted 

Hazard detection and 
anticipation (% success) 

Normal system operation 
and/or state transitions 

Complex, requiring 
information about hazards 
as well as driver's detection 
or anticipation of them 
(captured overtly through 
eye glances or covertly 
through behavioral proxies) 

- Widely studied in safety literature (albeit not in 
'technology' domain) 
- Hazard anticipation in certain scenarios could map 
onto knowledge/mental models 

- Impacted by other factors outside of education/training 
(e.g., age, experience, traffic conditions) 
- Connection between these metrics and 
education/training on vehicle technology is unclear 
(though good support for hazard anticipation training 
itself) 
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Discussion 

The purpose of this exercise was to enumerate and catalog measures of 
performance, safety, and behavior in the driving domain that could potentially bear on 
driver knowledge of advanced vehicle technology and, by extension, to the effectiveness 
of training and education approaches. A review of the scientific literature, engineering 
standards, and existing datasets was conducted, extracting numerous outcome measures 
of varying types. Additionally, input from domain experts was used to establish and then 
refine the list and appraisal of different measures. 

The initial scan of the different sources yielded an expansive list of over 120 
variables; however, removal or combination of redundant or very similar measures led 
to nine broad categories of measures in the matrix. The main takeaway from the matrix 
is that the measures vary greatly in terms of their implementation and complexity and 
each category or measure has advantages and disadvantages with respect to its 
relevance to system knowledge and to training and education. Moreover, some outcome 
measures can be targeted directly through training (e.g., teaching drivers how to turn on 
the system or when to take over control), while other measures are less direct. That said, 
in many cases, the relationship between a given outcome measure and driver knowledge 
has not been empirically established. Moreover, safe and appropriate system use, rather 
than driver knowledge per se, might be the appropriate target for measurement. Though 
not exhaustive relative to the full matrix (link), some highlights for each measurement 
category are discussed below.  

Given its strong face and construct validity, direct measurements or assessments 
of driver knowledge might be considered a gold standard. However, it is recognized that 
measuring driver knowledge directly might not always be feasible, nor can it necessarily 
be measured over time easily. Moreover, accurate knowledge of a system might not 
necessarily or always translate to accurate or appropriate system use (e.g., cases where 
drivers knowingly push the system beyond its limitations).  

Many of the measures related to control transitions and system interactions were 
thought to have high face validity as they often reflect appropriate and safe use of the 
systems. Such knowledge could be directly targeted through training. However, outside 
of controlled laboratory or experimental settings where these measures have often been 
employed, these could be complex depending on the setting/situation. There is some 
evidence that these classes of measures are sensitive to different levels of system 
understanding (e.g., Gaspar et al., 2020).  

Vehicle control and safety measures, such as speed, lane keeping, and crashes, are 
commonly used in traffic safety research and can be readily monitored continuously in 
all driving contexts. One major drawback, however, is that these measures are also 
impacted by other factors besides driver knowledge, such as environmental or 

http://aaafoundation.org/wp-content/uploads/2024/09/202410-AAAFTS-Drivers-Knowledge-VA-Expanded-Outcome-Measure-Matrix.xlsx
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situational factors. Crashes and near misses, including lane departures, are also very 
rare events in the real world and so could be difficult to leverage in an assessment of 
knowledge of vehicle technology.  

Many measures of attitudes and perceptions are available and have been 
deployed in past studies, such as trust in and adoption of technology and perceived 
useability of the systems. While these can be easily administered, they often deal with 
constructs that are related to driver knowledge of technology. Similar to the 
performance outcomes noted above, these measures can also be impacted by other 
factors and have relatively low face and construct validity relative to system 
understanding.  

Measures of workload vary in the degree of challenge in implementation and can 
offer important insight into the driver’s state or in their response to different situations 
(with or without the vehicle systems activated or during control transitions). That said, 
workload responses are, like many other measures, also highly susceptible to noise and 
other extraneous sources.  

Measures of driver’s attention, such as eye glance behavior and scanning also 
vary in terms of the complexity of implementation, but benefit from extensive use in 
past research, as well as innovative approaches to make real world use more practicable. 
While attentional allocation can be impacted by other extraneous factors, one 
discernible benefit is that driver attention can be mapped directly to key knowledge or 
training content regarding driver responsibilities while using certain vehicle technology. 
For example, measures of attention can offer an index of drivers’ vigilance and alertness 
while using the systems (and not engaging in non-driving related tasks).  

Outcomes from the matrix and from feedback from the subject matter experts 
underscore that the use of combinations or clusters of outcome measures would offer a 
stronger and more stable insight into a driver’s underlying knowledge. Such an approach 
would help account for some of the inherent shortcomings of just a single measure or 
class of measures. This would also help guard against potential homeostasis for some 
measures, where increased knowledge or training leads to improvements on some 
outcomes, but could also lead to more use of automation in more challenging situations.  

Building on the collection and classification of outcome measures, as well as their 
appraisal through the matrix, Part 2 of the study was intended to provide some 
additional insight into the efficacy of different measurement types under different use 
cases.   
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Part 2: Experimental Study 

The purpose of the experimental study was to identify and validate outcome 
measures that can be implemented to measure drivers’ knowledge and understanding of 
advanced vehicle systems. The selection and inclusion of measures was guided by Part 1, 
as well as by practical constraints of the experimental set up. Direct assessment of 
system understanding (via knowledge survey) was chosen as the “gold standard” for this 
effort, against which other metrics were evaluated.  

In order to gather a larger and more diverse sample of drivers, a multi-site 
experimental approach was adopted. A driving simulator study was executed at two 
different sites—UMass in Amherst, MA, and AAAFTS in Washington, DC—using a 
common platform, approach, scenarios, and measures. Given the aim of the study, to 
map differences in knowledge onto different performance outcomes, it was important to 
include participants with a wide range of knowledge of ACC. This was achieved through 
participant screening, as well as selective training of individuals at the outset of the 
experimental session.  

The human subjects experiment was overseen by two Institutional Review Boards 
(IRB), one for each site. The protocol was approved by the University of Massachusetts 
IRB (Study #4718) and by Advarra IRB (Pro00073933) and performed in accordance with 
the ethical standards as described in the 1964 Declaration of Helsinki.  

Method 

Participants 

Both sites recruited participants from their respective communities via flyers, ad 
postings on Craigslist, and word-of-mouth. To be eligible, participants were between 18 
and 65 years old, had a valid driver’s license, and were not susceptible to motion 
sickness. Characteristics for the sample of drivers are provided in Table 1.  

Table 1. Sample characteristics for the two sites. 

 UMass AAAFTS Overall 
Sample, N 41 24 65 

% Female (N) 32.3% (N = 10) 67% (N = 16) 40% (N = 26) 
Mean Age (SD) 25.5 (6.0) 33.8 (9.9) 28.6 (8.6) 

Mean Driving Experience, Years of Licensure (SD) 4.5 (5.5) 15.9 (8.9)  8.4 (8.6) 
Weekly Miles, N    

 <50 28 11 39 
50–100 8 10 18 

>100 5 3 8 
Experience with ACC (%) 49% 17% 37% 



  15 

Apparatus 

Driving Simulator. Both sites used a fixed-base Realtime Technologies Inc. (RTI; 
Ann Arbor, MI) driving simulator with SimCreator version 3.8 Build 10.9.19 software. 
Table 2 provides a side-by-side comparison of the hardware features for each site.  

Table 2. Driving simulator characteristics for both sites. 

Hardware UMass AAAFTS 

Configuration 

 
Ford Fusion Full Vehicle 

 
Racing Simulator Cockpit 

Number of Screens 6 total: 5 front screens + 1 rear screen 3 monitors 

Field of View 330 degrees 100 degrees 

Instrument Cluster In-cab display (Altia software) 
Simulated on front screen  

(Altia software) 

ACC Visual Interface 

 

ACC Controls 

OEM wheel with physical buttons 

 

Logitech G27 USB racing wheel with 
physical buttons and controls on gear 

box 

 
Center Console Touchscreen Physical controls 

Speakers 
5.1 channel audio system + 2 internal 

(vehicle) speakers 
Logitech Z313 speaker system  

Screen Resolution 
Front projectors: 1920 x 1200 
Rear projector: 1400 x 1050 

Monitors: 5760 x 1080 
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Eye Tracking and Video Monitoring. At the AAAFTS site, a Dikablis Model 3 eye 
tracker and D-lab software (Manching, Germany) were used to capture and analyze eye 
tracking data. The system optics were mounted in a lightweight pair of glasses worn by 
participants. The UMass site employed a SmartEye tracking system (v.9.1, Gothenburg, 
Sweden) with four SmartEye Pro cameras mounted on the dashboard and center console. 
While the two systems differed in terms of their implementation (e.g., head-mounted 
versus remote), both systems were able to generate comparable outcomes according to 
the lists of dependent measures noted below.  

At the UMass site, participants were recorded using the video capture and review 
system, Sim Observer (RTI, Ann Arbor, MI). Two cameras recorded the participant’s hand 
and foot movements, as well as the forward view and instrument cluster.  

Driving Environments and Scenarios.  Three experimental drives were 
developed within a rural, lightly industrialized environment (Figure 1). The road was a 
four-lane road with two lanes in both directions; in some sections, the road was divided 
and had a wide right-hand shoulder whereas in other sections the road was undivided 
and had a narrow shoulder. The posted speed limit was 60 or 65 mph, depending on the 
location, and traffic in the oncoming lane was sparse. In one drive (Drive 2), the ambient 
lighting was reduced to simulate dusk.  

 

Figure 1. Sample image of the driving environment. 

The ACC system was activated using either the steering wheel buttons (UMass site) 
or the center gear box (AAAFTS site). Participants could set the target speed, as well as 
the headway distance/spacing. The system was intended to operate effectively on all 
roads in the study (the scenarios described below notwithstanding). When activated, the 
ACC would maintain the set speed and desired vehicle spacing (see image in Table 2); 
drivers could adjust the speed upwards or downwards and the spacing closer or farther 
using physical controls.  

Within each drive, participants encountered varying scenarios, probes, and cues 
intended to demonstrate either understanding or appropriate use of the ACC system. The 
scenarios, probes, and cues within each drive are described below in the order in which 
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they took place in each drive (see Tables 3, 4, and 5). Some scenarios did not require a 
control transition (Non-Takeover Scenarios); that is, the event did not present a situation 
outside of the ACC capabilities (i.e., outside of the ODD). Other situations did exceed or 
encroach upon the ACC system capabilities and thus required that drivers takeover 
control (Takeover Scenarios; Figure 2). Each drive was counterbalanced across 
participants.  

Table 3. Scenarios, probes, and cues encountered in Drive 1.  

Type Event (label) Description 

Non-Takeover Pedestrian crossing (D1_S1) The driver approaches an intersection with traffic lights 
(displaying green) and a pedestrian approaches the 
edge of the crosswalk in the driver’s travel path  

Probe “What is the current set 
speed?” (D1_P1) 

The driver is asked to provide a verbal response  

Non-Takeover Shopping area (D1_S2) The driver encounters a shopping area on their right 
side with stores and several parked vehicles  

Probe “What is the current distance 
setting?” (D1_P2) 

The driver is asked to provide a verbal response 

Takeover Straddling lead vehicle 
(D1_S3) 

The driver encounters a lead vehicle that is swerving in 
and out of their travel lane 

Cue “Deactivate ACC without 
using your pedals” (D1_C1) 

The driver is asked to deactivate ACC using “Cancel” 

Cue “Reactivate ACC at the posted 
speed limit” (D1_C2) 

The driver is asked to reactivate ACC 

Takeover Slow-moving traffic (D1_S4) The driver reaches a line of slow-moving vehicles on 
the highway  

Non-Takeover Following Lead Vehicle 
(D1_S5) 

The driver encounters a lead vehicle traveling at the 
speed limit 
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Table 4. Scenarios, probes, and cues encountered in Drive 2.  

Type Event Description 

Takeover On-coming vehicle (D2_S1) The driver encounters a construction zone on the 
opposite side of the roadway and a vehicle moves into 
their travel lane from the opposite direction to pass the 
construction zone 

Probe “Is the current vehicle speed 
lower than the ACC set 
speed?” (D2_P1) 

The driver is asked to provide a verbal response  

Non-Takeover Construction zone on 
opposite side (D2_S2) 

The driver encounters a construction zone on the 
opposite size of the roadway 

Probe “Is ACC currently active?” 
(D2_P2) 

The driver is asked to provide a verbal response  

Takeover Oversized vehicle (D2_S3) The driver encounters an oversized vehicle in the right 
lane 

Takeover Poor visibility due to fog 
(D2_S4) 

The driver encounters bad visibility conditions due to 
fog  

Cue “Set ACC speed to 65 mph” 
(D2_C1) 

The driver is asked to increase the ACC set speed by 5 
mph 

Cue “Set ACC speed to 60 mph” 
(D2_C2)  

The driver is asked to set the ACC set speed back to the 
posted speed limit 

Non-Takeover Following Lead Vehicle 
(D2_S5) 

The driver encounters a lead vehicle traveling at the 
speed limit 
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Table 5. Scenarios, probes, and cues encountered in Drive 3.  

Type Event Description 

Non-Takeover Car on the right shoulder 
(D3_S1) 

The driver encounters a car parked on the right 
shoulder  

Probe “What speed are you 
traveling at?” (D3_P1) 

The driver is asked to provide a verbal response  

Cue “Set ACC to 55 mph” (D3_C1) The driver is asked to decrease the ACC set speed by 5 
mph 

Cue “Set ACC to 60 mph” (D3_C2) The driver is asked to set the ACC set speed back to the 
posted speed limit  

Takeover On-coming vehicle (D3_S2) The driver encounters an on-coming vehicle in the left 
lane traveling against the direction of traffic  

Non-Takeover Pedestrians on sidewalk 
(D3_S3) 

The driver encounters pedestrians walking on the 
sidewalk on their right  

Takeover Bicyclist group (D3_S4) The driver encounters a group of bicyclists in the right 
lane 

Probe “Is ACC currently active?” 
(D3_P2) 

The driver is asked to provide a verbal response  

Non-Takeover Following Lead Vehicle 
(D3_S5) 

The driver encounters a lead vehicle traveling at the 
speed limit 

 

(a)  

(b)  

Figure 2. Examples of driving scenarios. (a) Oncoming vehicle in left lane.  
(b) Oversized vehicle in right lane. 
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Training Material.  Two versions of training material were developed and these 
were selectively employed in order to increase the variability in knowledge across 
participants prior to their exposure to the experimental drives. Training content was 
adapted from materials used by Gaspar et al. (2020). Based on their scores on four 
knowledge pre-screen questions, participants were identified as being novice (score of 0 
or 1) or advanced in their knowledge of ACC (score of 3 and higher). Participants that 
correctly answered two items were randomly assigned to one of the two conditions in 
order to balance groups. 

The advanced group was provided with enhanced training material, which 
provided information about what ACC is, how it works, conditions that must be met for 
use, limitations, and common scenarios where ACC might not work in addition to 
detailed instructions on how to activate ACC, change headway distance/spacing settings, 
and cancel and resume ACC in the driving simulator environment they would be using 
(including labeled pictures). This was intended to reaffirm and/or expand their pre-
existing level of knowledge concerning ACC.  

In contrast, participants in the novice group were given basic training material, 
which covered what ACC is and how it works (same as for the advanced group), as well 
as pared down instructions for how to activate, cancel, and resume the ACC system. 
These slides included pictures of the ACC controls they would be using, though unlike in 
the enhanced slides, labels explaining proper interaction with the controls were not 
included. This approach was intended to offer these participants only basic instructions 
about using the ACC in the study. Sample slides are shown in Figure 3 and the full 
training content is shown in Appendix A. 

The novice and advanced groups were only established as interim categories to 
inform the selection of the appropriate training approach. For each site, approximately 
half of the participants fell into each category. Ultimately, participants’ scores on the 
mental model assessment were used as the outcome measure of interest, irrespective of 
which training approach they encountered.  
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(a)  

(b)  
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(c)  

Figure 3. Examples of training slides. (a) Basic system description (novice group, both sites). (b) 
Instruction on turning on system (advanced group, UMass site). (c) System limitations (advanced 

group, both sites). 

Procedure 

For each site, participants were recruited locally using posted flyers and Craigslist 
advertisements. In the screening survey, participants were asked to provide their contact 
information and responses to items that would determine their eligibility, including age, 
if they possessed a driver’s license, four questions to assess their current level of ACC 
knowledge, and three questions about their potential tendency to experience simulator 
sickness. Eligible participants received a follow- up email from an experimenter to 
schedule their in-person session. Responses to the ACC knowledge questions were used to 
classify drivers, per the description above.  

Upon arrival at the lab, participants were given an overview of the experiment 
and their participation and completed the informed consent process. Participants then 
completed a demographic survey, a trust survey (Jian et al., 2000; Appendix B), and a 
technology acceptance survey (Van der Laan et al., 1997; Appendix C). Following these 
surveys, participants reviewed one of two sets of ACC training slides, according to their 
knowledge group. Advanced participants were shown training slides with more robust 
information about the ACC system and its limitations (13 slides, Appendix A), while 
novice participants received a more condensed version of the slides with more basic 
information about the ACC system (3 slides, Appendix A). Participants were allowed to 
move through the training materials at their own pace, and to indicate to the 
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experimenter when they felt comfortable with the content. After their training, 
participants completed the mental model assessment (Appendix D).  

Participants were then introduced to the driving simulator and instructed about 
its configuration and assignment of standard features (turn signals, gear shift, etc.). 
Participants completed a practice drive lasting approximately five minutes in order to 
familiarize themselves with the system and to provide an opportunity for experimenters 
to monitor for signs of motion sickness. Participants were informed that experimenters 
could answer questions about the basic system, but were unable to answer any questions 
about the ACC feature. Following the practice drive, participants were introduced to the 
eye-tracking system and the system was calibrated.  

Experimenters then provided participants with instructions about the three 
experimental drives. Participants were encouraged to drive as they would in real world 
conditions and use the ACC system as much as possible within these drives, but to use 
their best judgment if they encountered a situation they felt the ACC system could not 
handle. Participants were told that they would hear audio messages throughout the 
drives that would ask them to perform an action or to answer a prompt, and that they 
should try to act and respond to the best of their ability. Participants were then told that 
once the drives began, the experimenters were unable to answer any questions.  

The order of the drives was counterbalanced across participants. After completing 
the drives, participants completed a second trust survey (Jian et al., 2000) and a workload 
survey (NASA-TLX; Hart & Staveland, 1988). Once these surveys were completed, 
participants were compensated and debriefed.  

Outcome Measures 

All participants completed three experimental drives, and their driving behaviors, 
responses, and other characteristics were recorded from the driving simulator, the eye 
tracking system, and via survey measures. Participants’ scores on the mental model 
assessment was the key dependent measure for the subsequent modeling.  

Drivers’ behaviors and other responses were measured using several outcome 
measures, the selection of which was guided by the measurement matrix (in Part 1) as 
well as what was practical or feasible in the current study. These outcome measures 
were grouped into different epochs, based on the experimental tasks and scenarios. The 
epochs, along with the related measures are described in the sub-sections below.  

Normal Driving.  In general, normal driving comprised intervals where the 
participant was driving with or without the ADAS system engaged and did not encounter 
any scenarios or receive any probes or cues. For each drive, data gathered prior to the 
first positive acceleration value and after the end of drive marker were excluded. The 
outcome measures for normal driving are noted in Table 6. Most measures were only 
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aggregated during intervals where the ACC system was active (versus manual driving 
situations); the exceptions were the measures related to system interactions (system use 
and system disengagements).  

Table 6. Outcome measures for normal driving.  

Measure Type Measure Definition  

Vehicle 
Control 

SD Lane Position Standard deviation of lane position (in m) 

SD Steering Standard deviation of angular steer wheel position 
(in deg) 

Safety Event 
Crash Count of crashes with other vehicles or objects 

Lane Departure Count of instances where lane position exceeded 
1.8 meters to the left or right 

Attention: 
Visual 

Behavior 

Mean glance* duration (to 
forward roadway) 

Mean glance duration to forward roadway (in s) 

Glance* count (to forward 
roadway) 

Number of glances to the forward view  

Horizontal and vertical gaze 
dispersal on forward roadway 

Standard deviation of distance of fixation point or 
eye position/coordinate from center of forward view 
for glances within this AOI  

Percent dwell time (forward 
roadway/front screen) 

Percentage of time where eyes are directed to the 
forward roadway relative to all normal epochs 

Attention: 
System 

Monitoring 

Mean glance* durations (to 
instrument panel [IP]) 

Mean glance duration to the IP (in s)  

Glance* counts (to IP) Number of glances to the IP 

Percent dwell time (IP)  Percentage of time where eyes are directed to the IP 
relative to all other locations within the normal 
epochs 

System 
Interaction 

System disengagements After initial engagement, number of times the ACC 
system was disengaged during normal epochs 

 System Use Percentage of time that ACC system was engaged 
relative to all normal epochs 

Note. Unless otherwise noted, measures are aggregated across all normal epochs across the three experimental 
drives.  
*A glance is defined as time from the first fixation to the forward view/IP until the last fixation before the eyes 
move to another AOI. 

Scenarios.  In the time windows surrounding a system transition, driving 
performance was measured before, during, or after scenarios in which the driver 
encountered a situation where the driver should resume control from the ACC or where 
a control transfer was not required (i.e., the ACC was capable of handling these 
situations). Not all outcome measures were relevant for both Takeover and Non-
Takeover scenarios. Table 7 lists those that were investigated for each scenario type.  
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Table 7. Outcome measures for different scenarios.  

 Measure Definition  

Scenario Type 

Non- 
Takeovera 

Takeoverb 

Average speed Mean speed (in mph or m/s) X X 

Speed variability Standard deviation of speed during 
event (in mph or m/s) 

X X 

Minimum speed Minimum speed reached during event 
(in mph or m/s) 

X X 

Maximum speed Maximum speed reached during event 
(in mph or m/s) 

X X 

Maximum deceleration Maximum deceleration during event 
(in m/s/s)  

X X 

SD headway Standard deviation of headway 
time/distance 

 X 

Minimum headway Shortest headway time (in s) /distance 
(in m) during event 

 X 

SDLP Standard deviation of lane position 
(in m) 

X X 

Maximum lane 
deviation 

Maximum lane position value to the 
left or right of center (in m) 

X X 

SD steering Standard deviation of steering wheel 
position (in deg) 

 X 

Maximum steering Maximum deviation of steering wheel 
position (in deg) 

 X 

Crash Crash occurrence (0 = no; 1 = yes)  X 

Lane departure Absolute lane position greater than 
1.8 m* during event (0 = no; 1 = yes) 

 X 

Appropriate system 
transition 

Did drivers respond appropriately 
with respect to system state? (0 = no; 
1 = yes; for each scenario type, 
appropriate response coding was 
reversed) 

X X 

Manner of 
disengagement 

If driver disengaged the system, how 
did they do so? (1 = brake pedal; 
2 = button press; 3 = other) 

X X 

Takeover response time Time from beginning of event until 
system was disengaged (in s) 

 X 
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 Measure Definition  

Scenario Type 

Non- 
Takeovera 

Takeoverb 

System accuracy Given decision to disengage system, 
did drivers make any interaction 
errors? (0 = no; 1 = yes) 

 X 

Mean glance durations 
(to forward roadway) 

Mean glance† duration to forward 
roadway (in s)  

X X 

Glance counts (to 
forward roadway) 

Number of glances† to the forward 
view  

X X 

Percent dwell time 
(forward roadway) 

Percentage of time where eyes are 
directed to the forward roadway 
relative to all other locations within 
normal epochs 

X X 

Horizontal and vertical 
gaze dispersal to 

forward roadway  

Standard deviation of distance of 
fixation point or eye 
position/coordinate from center of 
forward view (in m) 

X X 

Mean glance durations 
(to IP) 

Mean glance† duration to the IP (in s)  
X X 

Glance counts (to IP) Number of glances† to the IP  X X 

Percent dwell time (IP)  Percentage of time where eyes are 
directed to the IP relative to all other 
locations within normal epochs 

X X 

a Scenarios: Pedestrian (D1S1), Shopping (D1S2), Construction (D2S2), Car on Shoulder (D3S1), Pedestrians on 
Sidewalk (D3S3), Following Lead Vehicle (D1S5, D2S5, D3S5).  
b Scenarios: Straddling Vehicle (D1S3), Slow Traffic (D1S4), Oncoming Vehicles (D2S1, D3S2), Fog (D2S4), 
Oversized Vehicle (D2S3), Bicyclist Group (D3S4).  
* This is approximately one-half of the road width.  
†A glance is defined as time from the first fixation to the forward view/IP until the last fixation before the eyes 
move to another AOI. 
 

Verbal Probes and Cues. Selected outcome measures were gathered during the 
probe and cue events (see Table 8). These epochs began at the start of the auditory 
message and lasted between 5 and 34 seconds, depending on the individual probe/cue. 
The end times were based on a preliminary assessment of the 85th percentile response 
time from the AAAFTS site.  
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Table 8. Outcome measures from the probe and cue epochs.  

Measure Definition  

Probe/cue accuracy Correct response to probe or correct execution of cued action 
(0 = incorrect; 1 = correct) 

Mean glance durations (to IP) Mean glance* duration to the instrument panel (in s) 

Glance counts (to IP) Number of glances* to the IP  

Percent dwell time (IP)  Percentage of time where eyes are directed to the IP relative to 
all normal epochs 

* A glance is defined as time from the first fixation to the forward view/IP until the last fixation before the eyes 
move to another AOI. 

Subjective Measures.  Additional measures were gathered through multiple 
surveys administered throughout the experimental session (see Procedure above) and 
captured dimensions of driver behavior or perceptions such as trust, understanding, 
confidence, and acceptance, among others. The following measures were used in the 
modeling exercise.  

• Knowledge. Mental model (MM) score based on the accuracy of responses to the 
20 items in the mental model assessment. This was the response variable used in 
the modeling.  

• Confidence. Average confidence rating to the 20 items in the mental model 
assessment.  

• Trust. Average trust rating to the 12 items from the Jian et al. (2000) trust in 
technology scale. Trust was assessed two times, pre- and post-drive. 

• Technology Acceptance. Average rating across the nine items of the technology 
acceptance survey (Van der Laan et al., 1997).  

• Workload. Ratings on a seven-point scale gathered from the NASA-TLX for the six 
sub-scales, including mental demand, physical demand, temporal demand, 
performance, effort, and frustration (Hart & Staveland, 1988). Each sub-scale was 
included in the modeling.  

Results and Discussion 

The initial dataset included 65 participants and 426 variables across all data 
epochs. Only participants and variables with complete data were retained, and variables 
with no variation were removed. In order to maximize the available data for modeling, 
data from both sites was included in the same model. A site variable was included in 
order to capture any important site-specific variations.  

A machine learning approach was used to assess the effectiveness of different 
outcome variables in predicting driver knowledge of ACC, based on the scores from the 
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mental model assessment. Training (80%) and testing data (20%) sets were extracted 
from the master data file and a random forest approach was employed. Random forest 
models have been highly successful in modeling performance and physiological 
outcomes in other applications related to vehicle automation and driver state (e.g., Han 
et al., 2023; McDonald et al., 2014).  

An overall model was built and evaluated, which included data elements from all 
data epochs as well as driver demographic features. Separate models were then 
developed in alignment with the different data epochs:  

1. Normal driving 

2. Non-takeover scenarios 

3. Takeover scenarios 

4. Probes and cues 

5. Subjective measures 

Models for each epoch were run and compared with and without driver 
demographic and site variables. Although a simulator was used for all of the current data 
collection, the different models were intended to mimic different data collection 
capacities. For example, the complexity and challenge of gathering data from surveys, 
from normal (uneventful) driving, and from situations requiring an overt takeover of 
control vary considerably. The number of variables or features utilized in the models 
varied by the epoch, as described in the data section above. Due to technical and coding 
difficulties, two measures of headway (minimum and variability) were not included in 
the overall or takeover models.  

All model development and evaluation was carried out using R version 4.2-764 (R 
Core Team, 2024), with the randomForest and caret packages (Liaw & Wiener, 2002; 
Kuhn, 2008). The optimum number of trees in each model, number of variables tried at 
each split, and model performance was evaluated using root mean square error (RMSE) 
and the testing R2 values.  

Model Performance 

The model outcomes are shown in Table 9. Several important takeaways are 
evident. First, the overall model, which included all available data variables across all 
epochs, performed more poorly (R2 = 0.18) compared to many of the epoch models that 
targeted a particular driving situation or type of measure (R2 = 0.19 to 0.45). This could be 
due in part to the strength of the trees (i.e., how much model error is reduced by each 
tree) or high correlation between some of the underlying features. Regardless, this 
outcome suggests that a more focused array of measures, aligned with different use cases 
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or measurement types, might be more effective predictors of knowledge of vehicle 
technology in the current study.  

Table 9. Model performance for the different driving epochs both with and without driver 
demographics.  

 

Without Driver Demographicsa With Driver Demographicsa 

Variables 
Trees/ 

Split Sizeb RMSE R2 Variables 
Trees/ 

Split Sizeb RMSE R2 

Overall  – – – – 395 750/15 2.84 0.18 

Normal driving 49 950/30 2.97 0.11 56 1250/56 2.58 0.33 

Non-takeover 
scenarios  

143 1450/25 3.02 0.08 150 650/50 2.84 0.19 

Takeover 
scenarios  

138 500/50 2.27 0.19 145 500/55 2.34 0.28 

Probes/cues 40 950/40 2.95 0.12 47 2000/47 2.34 0.45 

Subjective 10 550/5 3.07 0.05 17 500/15 2.35 0.44 

a Driver demographics included Age, Gender, Race/Ethnicity, Driving Experience, Weekly Miles, Previous ACC 
Experience (yes/no), and Site.  
b The number of trees and variables tried at each split was based on the highest R2 and lowest RMSE for each, 
checking at intervals of 50 for trees sized 500–2000, and checking the number of variables tried at each split 
from 5–75 in intervals of 5. 

Second, the models performed much better when informed by some information 
about the drivers; that is, including certain demographic information enhanced model 
performance significantly. For example, epoch model performance ranged from R2 = 0.05 
to 0.19 when driver information was withheld. When included, model performance 
ranged from R2 = 0.19 to 0.45. Thus, it is prudent to consider tailored or personalized 
models whenever possible (e.g., Han et al., 2023). Even so, the performance of the current 
models suggests that there are other unmeasured factors that could account for 
additional variance in the models.  

Third, absent demographic and driver-related variables, the takeover scenario 
epoch model performed best (by a small margin), which included variables related to 
how drivers interact with the technologies in and around situations that the system is 
nearing its limitations. When demographic features were included, however, the 
subjective and probes/cues epoch models performed best, followed by takeover 
scenarios and normal driving epochs (see Table 9). Even with the inclusion of 
demographic information, the non-takeover scenario epoch model continued to perform 
poorly, suggesting that mundane or non-events—at least those contrived in the current 
context—might not offer significant insight into driver knowledge of vehicle systems 
(though they are still an integral part of a robust experiment or evaluation, e.g., to 
provide space and uncertainty around critical events and the like).  
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Features of Importance 

Beyond the model performance for the different epochs and data types, the most 
relevant features of importance were also examined in order to explore which 
underlying data elements might be most useful in predicting driver knowledge of vehicle 
technology. In each model, variable importance scores were determined by each 
variable’s mean decrease in accuracy (as defined by Liaw & Wiener, 2022), or how much 
the accuracy of the model decreases without that variable. In Figures 4–8 below, the top 
model features are plotted for each data epoch, with side-by-side comparisons of the 
models with and without demographic variables.  

For the Normal driving epoch, the most important features for both models 
largely related to the allocation of visual attention to the roadway and to the instrument 
cluster (see Figure 4), and more specifically, to the number of glances, the glance 
durations, and the resulting attention ratio (distribution of glances to the roadway and 
instrument panel). Standard deviation of steering was the only vehicle control–related 
metric that figured in the top ten features.  

For the Non-Takeover Scenario epochs, measures related to visual attention were 
most prominent (Figure 5). Maximum lane departure ranked highly, possibly indicating 
the adoption of greater safety margins in non-transition cases (e.g., moving further to the 
left side of lane when approaching pedestrians on the right side). In terms of the 
scenarios, following a lead vehicle, passing a pedestrian group, and passing a 
construction zone yielded the most important model features when driver demographics 
were not included in the model. When these features were included, the parked car and 
shopping area scenarios also contributed some of the most important features.  

With respect to Takeover epochs, while glance metrics continued to be prominent 
model features, more vehicle control and safety outcomes were represented (Figure 6). 
For example, measures of velocity and deceleration as well as the occurrences of crashes 
were represented in these takeover situations. These features originated from scenarios 
involving slow or erratic lead vehicles, a group of bicyclists, oncoming vehicles, or from 
the encounter of fog.  

For Probe and Cue epochs, the most important features were almost exclusively 
those related to how drivers distributed their attention to the roadway and instrument 
panel (Figure 7). Performance (accuracy) variables also featured in the model without 
driver demographics.  

With respect to Subjective measures, confidence in knowledge, frustration, 
technology acceptance, and trust were the most prominent model features (Figure 8). 
Interestingly, confidence was the top performing feature in the current study, although 
other recent studies have found that confidence often is dissociated with knowledge of 
vehicle technology (e.g., Lenneman et al., 2020; Mason et al., 2023; Carney et al., 2022).  
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Overall, measures of visual attention were the most important features across all 
of the epochs examined (excluding Subjective). This suggests that glance behavior has 
promise as a proxy for driver knowledge of vehicle technology. Indeed, how drivers 
distribute their attention to the roadway and instrument panel logically should reflect 
their engagement in the task and their knowledge of their underlying responsibilities to 
continue to monitor the traffic environment as well as the system status.  

With few exceptions, vehicle control measures did not feature prominently in the 
modeling efforts. While this could reflect the relatively straight roadways and traffic 
environments adopted in the current study, it could also underscore the role and 
influence of other factors unrelated to knowledge of technology in determining 
momentary vehicle control. That said, vehicle control measures (and, similarly, safety 
outcomes) did feature more prominently in the takeover scenarios, where an overt 
response was required in order to successfully avoid a traffic conflict. In general, driving 
experience, race/ethnicity, and, to a lesser extent, age were the most important 
demographic features when those variables were included. 
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Without Driver Demographics 

 

With Driver Demographics 

 

Figure 4. Top features of importance for Normal Driving epoch. 
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Without Driver Demographics 

 
With Driver Demographics 

 

Figure 5. Top features of importance for Non-Takeover Scenario epoch. 
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Without Driver Demographics 

 

With Driver Demographics 

 

Figure 6. Top features of importance for Takeover Scenario epochs. 
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Without Driver Demographics 

 
With Driver Demographics 

 

Figure 7. Top features of importance for Probe / Cue epochs. 
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Without Driver Demographics 

 

With Driver Demographics 

 

Figure 8. Top features of importance for Subjective measures epoch. 



  37 

General Discussion and Key Takeaways 

Advanced vehicle technologies have the potential to improve safety and 
convenience for drivers (e.g., Bengler et al, 2014; Fisher et al., 2020); however, in order to 
realize these benefits, it is important that drivers use the systems appropriately. Past 
research has documented gaps in drivers’ and other road users’ understanding of how 
new technology works and when it should be used (e.g., McDonald et al., 2018; Gaspar et 
al., 2020; Lenneman et al., 2020; Mason et al., 2023). Thus, the interplay between driver 
knowledge, performance and safety outcomes, and approaches for training and 
education have become topics of interest in the research and stakeholder communities. 
Along these lines, further work exploring the relationship between driver knowledge 
and outcomes on a wide variety of performance and safety measures is needed. This 
would offer more tools to establish or infer a driver’s understanding of technology as 
well as instruments to assess the efficacy of different approaches to training and 
education.  

Thus, the overall objective of this study was to identify, catalog, and appraise 
outcome measures in terms of their utility in assessing or inferring driver knowledge of 
advanced vehicle technologies. The outcomes of the two parts of the study, the review of 
potential measures and the experimental validation study, are summarized briefly 
below followed by key takeaways and caveats.  

Landscape of Outcome Measures 

The purpose of this review was to enumerate and catalog measures of 
performance, safety, and behavior in the driving domain that could potentially bear on 
driver knowledge of advanced vehicle technology. The review of the scientific literature, 
engineering standards, and existing datasets yielded a wide array of measures, which 
were distilled into a smaller set of nine categories. These categories are as follows:  

• Control transitions 
• System interactions 
• Vehicle control 
• Safety events 
• System understanding 
• Attitudes and perceptions 
• Workload, Usability 
•  Attention 

A detailed accounting of each category is provided in the matrix above and in an 
alternative format here. 

Overall, the measures varied greatly in terms of how they might be implemented 
and how challenging the implementation would be. Each category had noteworthy 

http://aaafoundation.org/wp-content/uploads/2024/09/202410-AAAFTS-Drivers-Knowledge-VA-Expanded-Outcome-Measure-Matrix.xlsx
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advantages and disadvantages with respect to their bearing on system knowledge and, in 
many cases, the relationship between the measure and driver knowledge had not been 
investigated empirically.  

Direct measurement or assessments of driver knowledge through surveys or 
other instruments were considered a gold standard; however, with some shortcomings 
related to the feasibility of measuring over time. Many measures related to control 
transitions and system interactions were thought to be beneficial as they reflect 
appropriate and safe use of the systems. These have been examined empirically in some 
past research as well (e.g., Gaspar et al., 2020). In contrast, vehicle control and safety 
measures, such as speed, lane keeping, and crashes, are commonly used in safety 
research, but are impacted by other factors besides driver knowledge, including 
environmental or situational factors. In addition, crashes and near misses, including lane 
departures, are very rare events, which detract from their usefulness in appraising 
driver knowledge of vehicle technology or learnings from training and educational 
approaches.  

Measures of attitudes and perceptions can be easily administered and, while they 
often deal with constructs that are related to knowledge of technology, they are also 
impacted by other factors. Similarly, measures of workload can shed insight into the 
driver’s state in different situations but are often susceptible to noise and other 
extraneous sources.  

Driver attention is often assessed in research settings and can also be 
implemented in situ. While the distribution of one’s attention is shaped by other factors 
(as for other measures noted above), one discernible benefit is that driver attention can 
be mapped directly to critical knowledge regarding driver responsibilities while using 
certain vehicle technology. That is, eye glance metrics can be good indicators that a 
driver is appropriately engaged in traffic scanning behavior and system monitoring 
when the system is engaged. Moreover, visual scanning is a skill that can be trained (e.g., 
Pradhan et al., 2005; 2011; Unverricht et al., 2018). 

All in all, the outcomes from Part 1 suggest that combinations of outcome 
measures could offer a better indication of a driver’s underlying knowledge, owing to the 
many pros and cons articulated in the matrix. That is, adopting multiple measures would 
help offset some of the inherent shortcomings of just a single measure or class of 
measures. The next phase of the project sought to better elucidate the relationship 
between a subset of these measures and system knowledge.  

Relationship among Outcomes and System Knowledge 

The purpose of Part 2 was to identify and validate outcome measures that can be 
implemented in research to measure drivers’ knowledge and understanding of advanced 
vehicle systems using a multi-site experimental approach. A driving simulator study was 
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executed at two different sites using a common approach, scenarios, and measures. 
While a full accounting of all measures identified in Part 1 was infeasible, the study 
sought to include as many as possible as well as incorporating different use cases (i.e., 
types of measurement epochs or test windows).  

The results from the random forest modeling suggested that adopting a more 
stringent set of measures (according to measurement epochs and types) was preferred to 
including every available measure—at least was in the case in the current context where 
the number of available measures likely exceeded what might be present in other 
settings.  

Importantly, having some demographic information about the driver helped to 
enhance the performance of the models and, by extension, the utility of the outcome 
variables in predicting system knowledge. In many though perhaps not all use cases, 
including some information about the driver appears feasible.  

Depending on the availability of demographic and driver-related variables, 
measures that involve routine interactions with the systems (e.g., probes and cues) or in 
control transition or takeover situations contributed to the model performance, as did 
other complimentary subjective measures and measures gleaned during normal system 
operation (i.e., normal driving epochs).  

With respect to more specific metrics, measures of visual attention were generally 
the most important features in the modeling efforts. That is, the manner in which drivers 
distribute their attention to the roadway and instrument panel appears to be indicative 
of their knowledge of their underlying responsibilities or of the system limitations. In 
contrast, most measures of vehicle control failed to provide any important insight in the 
predictive models. This could reflect the influence of other factors unrelated to driver 
knowledge of technology in determining momentary vehicle control. That said, vehicle 
control and safety measures were relevant when examining control transition situations, 
where active control was required to avoid conflict.  

Takeaways 

Collectively, the two parts comprising this research study shed some insight into 
the utility of different types of measures in assessing driver knowledge of advanced 
vehicle technology. Ultimately, employing a cluster of measures is advised in this space 
in order to account for some of the limitations associated with an individual measure. 

While the matrix offered some high-level perspectives on when a certain measure 
might be assessed (e.g., pre-drive or in situ), the results from the experimental study 
offered more specific information about the optimal timing of measurements in relation 
to different situations or use cases. That is, the experimental work further highlights how 
the variables most strongly related to knowledge of ADAS vary by measurement 
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window; in particular, those measurement windows or epochs involving system 
interactions or control takeovers, or routine situations where the system is operating 
showed stronger outcomes in the modeling exercise. This is useful information for those 
who might be constrained by the type of data that can be acquired or assessment that 
can be conducted.  

Eye glance measures also featured prominently in all of the relevant models, 
including those related to glance location, frequency, and duration. This outcome 
corroborated some of the perspectives gleaned from the matrix noting the advantages of 
eye glance metrics in mapping onto a driver’s roles and responsibilities while using the 
technology. More work is needed to establish whether head movements, which are 
easier to measure in situ, might serve as a sufficient proxy for eye glance measures. 

With respect to measures of vehicle control, the matrix highlighted some 
constraints in their use as these measures are often impacted by many other factors. This 
too was evident from the experimental study, with vehicle control and related safety 
measures not showing as prominent components of the models in most cases. The 
noteworthy exception was in cases where active vehicle control was necessary (i.e., 
control transition or takeover scenarios).  

Subjective measures, such as confidence and acceptance of technology and trust, 
were also good predictors of knowledge. However, practically speaking, if one were in a 
position to gather an array of subjective measures, it is plausible that measuring 
knowledge of vehicle technology directly would also be practicable. What begs further 
research is whether some subjective measures could be distilled in a shorter form, 
equally useful or predictive, that could be captured more effectively in situ. For example, 
whether a survey instrument with several or many items could be equally effective with 
one or two key items.  

In summary, researchers and other stakeholders interested in gauging driver 
knowledge of technology or in assessing educational or training approaches should do 
the following: 

• Prioritize measures of eye glance behavior to corroborate a driver’s knowledge of 
the vehicle system; vehicle control and safety measures are more effectively 
applied in specific edge-case or takeover situations. 

• Establish measurement windows around system interactions (e.g., changing 
system settings), takeover situations, and normal system operation (where the 
system is activated). 

• Leverage subjective measures, such as confidence or technology acceptance 
whenever possible, which are strong predictors of knowledge.  

• Incorporate or consider information about the driver, such as driving experience 
and demographics.  
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It is also important to underscore that tying performance outcomes to driver 
knowledge of vehicle technology and, by extension, to the efficacy of training and 
educational efforts is but one lens through which to interpret the current outcomes. A 
broad assessment of behavior and performance, irrespective of knowledge and 
reflecting the multifaceted dimensions of the matrix, can be useful in its own right as this 
can lend insight into the overall safety of an individual or groups of drivers. 

Limitations and Future Directions  

While the current study offers some useful insight into proxies for driver 
knowledge of vehicle technologies, there are a number of limitations that should be 
noted. First, the experimental study was in a simulator setting, with limited range of 
variables and a limited array of driving conditions. It was not feasible to test the entire 
universe of possible outcome measures, so the approach was aimed at gathering a useful 
representation of measures or categories of the matrix. However, it is not exhaustive and 
there are questions about how well the current results can generalize to other settings or 
use cases. Moreover, some categories of measures, such as system interaction, were 
represented by only a handful of measures whereas other categories had many 
measures (e.g., attention and vehicle control). While this is a natural by-product of the 
types of measures themselves, future work could explore a broader array of measures 
according to some of the matrix categories. This could also help inform on other relevant 
factors that could increase the performance of the models (e.g., increasing the R2 values). 
Future work can also consider how different measures evolve over time as drivers gain 
more experience with the systems.  

The current study focused on one ADAS technology, adaptive cruise control, as 
this technology is widely available yet often misunderstood (e.g., McDonald et al., 2018). 
Moreover, the current study only implemented a single version of ACC; it is very likely 
that the design of the system could impact many of the specific measures and system 
knowledge itself (e.g., more intuitive designs). It is unclear whether the current outcomes 
share implications for other forms of technology and higher levels of automation. While 
this is an open question, it is believed that much of the broad foundational work 
expressed in the matrix can be applied to other forms of ADAS technology, as well as to 
more advanced levels of automation. It should be noted too that, on the other end of the 
spectrum, understanding of active collision avoidance systems, such as automatic 
emergency braking (AEB), is less important given that such systems are intended to 
intervene only in critical situations and do so without any driver input. The nuance of 
individual variables accounted for in the experimental work might vary for other forms 
of technology, however, and should be the focus of further investigation.  

Another interesting question is whether different measures (or the ideal 
combinations) could be tailored to assess different components of understanding. The 
current study used a single score to denote overall knowledge of the system; however, 
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this could be distilled into subcomponents such as knowledge related to operation of the 
system versus knowledge of system capabilities or limitations. For example, measures of 
system interactions might map well onto understanding of system function and 
operation, whereas visual attention might be more reflective of a driver’s understanding 
of system limitations.  

Lastly, while the current work is often related or extrapolated to approaches to 
training and education, more work is needed to empirically examine the direct impact of 
different training or educational materials on different outcome measures, the selection 
of which could be informed by the current work. This could also complement a broader 
discussion and consideration of what are the overall aims of any training or educational 
approach.  
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Appendix A: Training Materials (after Gaspar et al., 2020)

Novice Group (UMass Site) 
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Advanced Group (UMass Site) 
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Advanced Group (UMass Site) 
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Advanced Group (UMass Site) 
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  50 

Advanced Group (UMass Site) 
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Appendix B: Trust Survey (Jian et al., 2000)

Please answer the following questions based on your understanding of Adaptive Cruise Control 
(ACC): (participants rated on a 7-point scale: 1 (Not at all) – 7 (Extremely)) 

● The system is deceptive 

● The system behaves in an underhanded manner 

● I am suspicious of the system’s intent, action, or outputs 

● I am wary of the system 

● The system’s action will have a harmful or injurious outcome 

● I am confident in the system 

● The system provides security 

● The system has integrity 

● The system is dependable 

● The system is reliable 

● I can trust the system 

● I am familiar with the system 
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Appendix C: Technology Acceptance Survey (Van der Laan et al., 1997) 

  

The use of the system while driving would be: 

 1 2 3 4 5 6 7  

Bad        Good 

Useless        Useful 

Desirable        Undesirable 

Ineffective        Effective 

Sleep inducing        Alerting 

Unpleasant        Pleasant 

Extremely Annoying        Not at all annoying 

Irritating        Likable 

Assisting        Worthless 
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Appendix D: Mental Model Assessment

The following questions will ask you about your current understanding of Adaptive Cruise 
Control (ACC). You may have previous experience with ACC systems, but it is important that you 
focus on the information provided to answer these questions. For each question, please indicate 
whether the statement is "True" or "False". Please answer the following question regarding ACC. 

For each item, participants were also asked: “Please indicate your level of confidence to the 
previous question” (Low confidence, Medium confidence, High confidence) 

1) Maintains the speed that you have set when there are no vehicles detected in the lane ahead  

2) Brakes and accelerates to maintain a following gap from the vehicle ahead 

3) Adjusts the speed to match faster vehicles ahead 

4) Will accelerate if a slower vehicle ahead moves out of the detection zone 

5) Will provide steering input to keep the vehicle in its lane 

6) Will correctly detect motorcycles and other smaller vehicles not driving in the center of the 
lane  

7) Is meant to be used on highways and interstates 

8) May not correctly detect stopped vehicles in your lane  

9) Reacts to stationary objects on the road (construction cone, tire, ball) 

10) Works well on curvy roads and hills 

11) Is meant to be used in slow and heavy traffic 

12) Adjusts the speed when there are slower moving vehicles detected ahead 

13) Will react immediately to vehicles merging onto the road in front of you 

14) Reacts to oncoming traffic 

15) Adjusts the vehicle speed when approaching tight curves 

16) Is meant to be used on rural roads 

17) May not correctly detect vehicles ahead traveling at much slower speeds 

18) Works even when the radar sensor is dirty 

19) Can be activated at a standstill 

20) Can handle operating in all weather conditions 
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